Startseite Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents

  • Mohammad Sayed Alam , S. M. Mostafizur Rahman und Dong-Ung Lee EMAIL logo
Veröffentlicht/Copyright: 15. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present study, a series of chalcone derivatives including 17 new compounds were synthesised; their antibacterial activities against eleven bacteria, and their free radical-scavenging activities using DPPH were evaluated. All compounds showed significant antibacterial activities against both Grampositive and Gram-negative bacteria. In particular, compound IIIf strongly inhibited Staphylococcus aureus (JMC 2151) and Enterococcus faecalis (CARS 2011-012) with MIC values of 6.25 μg mL−1 and 12.5 μg mL−1, respectively, which are comparable to that of the standard antibiotic, nalidixic acid. Compound IIIg also inhibited S. aureus with a MIC value similar to that of nalidixic acid (6.25 μg mL−1). Furthermore, like nalidixic acid (MIC value of 25 μg mL−1), compounds IIIa, IIIc and IIId inhibited Listeria monocytogenes (ATCC 43256) with MIC values of 25 μg mL−1, 12.5 μg mL−1 and 25 μg mL−1, respectively. Quantitative structure-activity relationship (Q-SAR) studies using physicochemical calculations indicated that the antibacterial activities of chalcone derivatives correlated well with predicted physicochemical parameters (logP and PSA). Docking simulation by positioning the most active compound IIIf in the active site of the penicillin-binding protein (PBP-1b) of S. aureus was performed to explore the feasible binding mode. Furthermore, most of the compounds synthesised exhibited significant DPPH radical-scavenging activity, although compounds IIc and IIIc exhibited the greatest antioxidant activity with IC50 values of 1.68 μM and 1.44 μM, respectively, comparable to that of the standard antioxidant, ascorbic acid (1.03 μM).

References

Adam, M., Fraipont, C., Rhazi, N., Nguyen-Distèche, M., Lakaye, B., Frère, J. M., Devreese, B., Van Beeumen, J., van Heijenoort, Y., van Heijenoort, J., & Ghuysen, J. M. (1997). The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate. Journal of Bacteriology, 179, 6005-6009.10.1128/jb.179.19.6005-6009.1997Suche in Google Scholar PubMed PubMed Central

Agrawal, N. N., & Soni, P. A. (2007). Synthesis of pyrazole and isooxazole in triethanolamine medium. Indian Journal of Chemistry, Section B, 46B, 532-534.Suche in Google Scholar

Aichaoui, H., Guenadil, F., Kapanda, C. N., Lambert, D. M., McCurdy, C. R., & Poupaert, J. H. (2009). Synthesis and pharmacological evaluation of antioxidant chalcone derivatives of 2(3H)-benzoxazolones. Medicinal Chemistry Research, 18, 467-476. DOI: 10.1007/s00044-008-9143-y.10.1007/s00044-008-9143-ySuche in Google Scholar

Alam, M. S., & Lee, D. U. (2011). Cytotoxic and antimicrobial properties of furoflavones and furochalcones. Journal of the Korean Society for Applied Biological Chemistry, 54, 725-730. DOI: 10.3839/jksabc.2011.109.10.1007/BF03253151Suche in Google Scholar

Alam, M. S., Nam, Y. J., & Lee, D. U. (2013). Synthesis and evaluation of (Z)-2,3-diphenylacrylonitrile analogs as anti-cancer and anti-microbial agents. European Journal of Medicinal Chemistry, 69, 790-797. DOI: 10.1016/j.ejmech.2013.08.031.10.1016/j.ejmech.2013.08.031Suche in Google Scholar PubMed

Alcaráz, L. E., Blanco, S. E., Puig, O. N., Tomás, F., & Ferretti, F. H. (2000). Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. Journal of Theoretical Biology, 205, 231-240. DOI: 10.1006/jtbi.2000.2062.10.1006/jtbi.2000.2062Suche in Google Scholar PubMed

Alves, M. J., Froufe, H. J. C., Costa, A. F. T., Santos, A. F., Oliveira, L. G., Osório, S. R. M., Abreu, R. M. V., Pintado, M., & Ferreira, I. C. F. R. (2014). Docking studies in target proteins involved in antibacterial action mechanisms: Extending the knowledge on standard antibiotics to antimicrobial mushroom compounds. Molecules, 19, 1672-1684. DOI: 10.3390/molecules19021672.10.3390/molecules19021672Suche in Google Scholar PubMed PubMed Central

Awasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C., & Bhasin, V. K. (2009). Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Medicinal Chemistry Research, 18, 407-420. DOI: 10.1007/s00044-008-9137-9.10.1007/s00044-008-9137-9Suche in Google Scholar

Battenberg, O. A., Yang, Y., Verhelst, S. H. L., & Sieber, S. A. (2013). Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification. Molecular BioSystems, 9, 343-351. DOI: 10.1039/c2mb25446h.10.1039/c2mb25446hSuche in Google Scholar PubMed

Berthelot, J., Benammar, Y., & Desmazières, B. (1995). Action of tetrabutylammonium tribromide with para-substituted chalcones in protic and aprotic media. Canadian Journal of Chemistry, 73, 1526-1530. DOI: 10.1139/v95-189.10.1139/v95-189Suche in Google Scholar

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. DOI: 10.1038/1811199a0.10.1038/1811199a0Suche in Google Scholar

Charpentier, X., Chalut, C., Rémy, M. H., & Masson, J. M. (2002). Penicillin-binding proteins 1a and 1b form independent dimers in Escherichia coli. Journal of Bacteriology, 184, 3749-3752. DOI: 10.1128/jb.184.13.3749-3752.2002.10.1128/JB.184.13.3749-3752.2002Suche in Google Scholar PubMed PubMed Central

Cheenpracha, S., Karalai, C., Ponglimanont, C., Subhadhirasakul, S., & Tewtrakul, S. (2006). Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorganic & Medicinal Chemistry, 14, 1710-1714. DOI: 10.1016/j.bmc.2005.10.019.10.1016/j.bmc.2005.10.019Suche in Google Scholar PubMed

Contreras-Martel, C., Amoroso, A., Woon, E. C., Zervosen, A., Inglis, S., Martins, A., Verlaine, O., Rydzik, A. M., Job, V., Luxen, A., Joris, B., Schofield, C. J., & Dessen, A. (2011). Structure-guided design of cell wall biosynthesis inhibitors that overcome β-lactam resistance in Staphylococcus aureus (MRSA). ACS Chemical Biology, 6, 943-951. DOI: 10.1021/cb2001846.10.1021/cb2001846Suche in Google Scholar PubMed

Desai, N. C., Satodiya, H. M., Kotadiya, G. M., & Vaghani, H. V. (2014). Synthesis and antibacterial and cytotoxic activities of new N-3 substituted thiazolidine-2,4-dione derivatives bearing the pyrazole moiety. Archives of Pharmaceutical Chemistry in Life Sciences, 347, 523-532. DOI: 10.1002/ardp.201300466.10.1002/ardp.201300466Suche in Google Scholar PubMed

Dinkova-Kostova, A. T., Abeygunawardana, C., & Talalay, P. (1998). Chemoprotective properties of phenylpropenoids, bis(benzylidene)cycloalkanones, and related Michael reaction acceptors: Correlation of potencies as phase 2 enzyme inducers and radical scavengers. Journal of Medicinal Chemistry, 41, 5287-5296. DOI: 10.1021/jm980424s.10.1021/jm980424sSuche in Google Scholar PubMed

Markham, K. R., & Geiger, H. (1994). 1H nuclear magnetic resonance spectroscopy of flavonoids and their glycosides in hexadeuterodimethylsulfoxide. In J. B. Harborne (Ed.), The flavonoids: Advances in research since 1986 (Chapter 10, pp. 441-498). Boca Raton, FL, USA: Chapman & Hall/CRC.Suche in Google Scholar

Kiat, T. S., Pippen, R., Yusof, R., Ibrahim, H., Khalid, N., & Rahman, N. A. (2006). Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorganic & Medicinal Chemistry Letters, 16, 3337-3340. DOI: 10.1016/j.bmcl.2005.12.075.10.1016/j.bmcl.2005.12.075Suche in Google Scholar PubMed

Konaklieva, M. I. (2014). Molecular targets of β-lactam-based antimicrobials: Beyond the usual suspects. Antibiotics, 3, 128-142. DOI: 10.3390/antibiotics3020128.10.3390/antibiotics3020128Suche in Google Scholar PubMed PubMed Central

Lahsasni, S. A., Al Korbi, F. H., & Abdel-Aziz Aljaber, N. (2014). Synthesis, characterization and evaluation of antioxidant activities of some novel chalcones analogues. Chemistry Central Journal, 8, 32-40. DOI: 10.1186/1752-153x-8-32.10.1186/1752-153X-8-32Suche in Google Scholar PubMed PubMed Central

Liu, X. L., Xu, Y. J., & Go, M. L. (2008). Functionalized chalcones with basic functionalities have antibacterial activity against drug sensitive Staphylococcus aureus. European Journal of Medicinal Chemistry, 43, 1681-1687. DOI: 10.1016/j.ejmech.2007.10.007.10.1016/j.ejmech.2007.10.007Suche in Google Scholar PubMed

Mahmoodi, N., Besharati-Seidani, T., Motamed, N., & Mahmoodi, N. O. (2014). Anti-cancerous effect of 4,4_-dihydroxychalcone ((2E,2_E)-3,3_-(1,4-phenylene)bis(1-(4-hydroxyphenyl) prop-2-en-1-one)) on T47D breast cancer cell line. Annual Research & Review in Biology, 4, 2045-2052. DOI: 10.9734/arrb/2014/8484.10.9734/ARRB/2014/8484Suche in Google Scholar

Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P., & Khan, S. R. (2006). Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorganic & Medicinal Chemistry, 14, 3491-3495. DOI: 10.1016/j.bmc.2006.01.003.10.1016/j.bmc.2006.01.003Suche in Google Scholar PubMed

Muroi, H., Nihei, K., Tsujimoto, K., & Kubo, I. (2004). Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus. Bioorganic & Medicinal Chemistry, 12, 583-587. DOI: 10.1016/j.bmc.2003.10.046.10.1016/j.bmc.2003.10.046Suche in Google Scholar PubMed

Murray, P. R., Rosenthal, K. S., & Pfaller, M. A. (2006). Microbiología médica (5th ed.). Madrid, Spain: Elsevier Espana. (in Spanish) Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K., & Kromann, H. (2005). Cationic chalcone antibiotics. Design, synthesis, and mechanism of action. Journal of Medicinal Chemistry, 48, 2667-2677. DOI: 10.1021/jm049424k.10.1021/jm049424kSuche in Google Scholar PubMed

Nishino, C., Enoki, N., Tawata, S., Mori, A., Kobayashi, K., & Fukushima, M. (1987). Antibacterial activity of flavonoids against Staphylococcus epidermidis, a skin bacterium. Agricultural and Biological Chemistry, 51, 139-143. DOI: 10.1271/bbb1961.51.139.10.1271/bbb1961.51.139Suche in Google Scholar

Nowakowska, Z. (2007). A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, 42, 125-137. DOI: 10.1016/j.ejmech.2006.09.019.10.1016/j.ejmech.2006.09.019Suche in Google Scholar PubMed

Piantadosi, C., Hall, I. H., Irvine, J. L., & Carlson, G. L. (1973). Cycloalkanones. 2. Synthesis and biological activity α,α_- dibenzylcycloalkanones. Journal of Medicinal Chemistry, 16, 770-795. DOI: 10.1021/jm00265a006.10.1021/jm00265a006Suche in Google Scholar PubMed

Rahman, A. F. M. M., Alam, M. S., & Kadi, A. A. (2012). Synthesis and antimicrobial activity of novel tetrabromobis(substituted benzyl)cycloalkanones. Journal of the Serbian Chemical Society, 77, 717-723. DOI: 10.2298/jsc110408005m.10.2298/JSC110408005MSuche in Google Scholar

Robinson, T. P., Hubbard, R. B., IV, Ehlers, T. J., Arbiser, J. L., Goldsmith, D. J., & Bowen, J. P. (2005). Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorganic & Medicinal Chemistry, 13, 4007-4013. DOI: 10.1016/j.bmc.2005.03.054.10.1016/j.bmc.2005.03.054Suche in Google Scholar PubMed

Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A., & Charlier, P. (2008). The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiology Reviews, 32, 234-258. DOI: 10.1111/j.1574-6976.2008.00105.x.10.1111/j.1574-6976.2008.00105.xSuche in Google Scholar PubMed

Seo, W. D., Kim, J. H., Kang, J. E., Ryu, H.W., Curtis-Long, M. J., Lee, H. S., Yang, M. S., & Park, K. H. (2005). Sulfonamide chalcone as a new class of α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 15, 5514-5516. DOI: 10.1016/j.bmcl.2005.08.087.10.1016/j.bmcl.2005.08.087Suche in Google Scholar PubMed

Sharma, M. C. (2014). Molecular modeling studies of substituted 3,4-dihydroxychalcone derivatives as 5-lipoxygenase and cyclooxygenase inhibitors. Medicinal Chemistry Research, 23, 1797-1818. DOI: 10.1007/s00044-013-0745-7.10.1007/s00044-013-0745-7Suche in Google Scholar

Sivakumar, P. M., Priya, S., & Doble, M. (2009). Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents. Chemical Biology & Drug Design, 73, 403-415. DOI: 10.1111/j.1747-0285.2009.00793.x.10.1111/j.1747-0285.2009.00793.xSuche in Google Scholar

Spratt, B. G., Jobanputra, V., & Schwarz, U. (1977). Mutants of Escherichia coli which lack a component of penicillinbinding protein I are viable. FEBS Letters, 79, 374-378. DOI: 10.1016/0014-5793(77)80824-7.10.1016/0014-5793(77)80824-7Suche in Google Scholar

Stewart, J. J. P. (2004). Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. Journal of Molecular Modeling, 10, 155-164. DOI: 10.1007/s00894-004-0183-z.10.1007/s00894-004-0183-zSuche in Google Scholar PubMed

Sun, L. P., Gao, L. X., Ma, W. P., Nan, F. J., Li, J., & Piao, H. R. (2012). Synthesis and biological evaluation of 2,4,6-trihydroxychalcone derivatives as novel protein tyrosine phosphatase 1B inhibitors. Chemical Biology & Drug Design, 80, 584-590. DOI: 10.1111/j.1747-0285.2012.01431.x.10.1111/j.1747-0285.2012.01431.xSuche in Google Scholar PubMed

Tenover, F. C., & McDonald, L. C. (2005). Vancomycinresistant staphylococci and enterococci: epidemiology and control. Current Opinion in Infectious Diseases, 18, 300-305. DOI: 10.1097/01.qco.0000171923.62699.0c.10.1097/01.qco.0000171923.62699.0cSuche in Google Scholar PubMed

Terrak, M., Ghosh, T. K., van Heijenoort, J., Van Beeumen, J., Lampilas, M., Aszodi, J., Ayala, J. A., Ghuysen, J. M., & Nguyen-Distèche, M. (1999). The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Molecular Microbiology, 34, 350-364. DOI: 10.1046/j.1365-2958.1999.01612.x.10.1046/j.1365-2958.1999.01612.xSuche in Google Scholar PubMed

Tökés, A. L., Litkei, G., & Szilágyi, L. (1992). N-Heterocycles by cyclization of 2_-Nhr-chalcones, 2_-Nhr-chalcone dibromides and 2_-Nhr-α-azidochalcones. Synthetic Communications, 22, 2433-2445. DOI: 10.1080/00397919208021640.10.1080/00397919208021640Suche in Google Scholar

Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455-461. DOI: 10.1002/jcc.21334.10.1002/jcc.21334Suche in Google Scholar PubMed PubMed Central

Varinska, L., van Wijhe, M., Belleri, M., Mitola, S., Perjesi, P., Presta, M., Koolwijk, P., Ivanova, L., & Mojzis, J. (2012). Anti-angiogenic activity of the flavonoid precursor 4- hydroxychalcone. European Journal of Pharmacology, 691, 125-133. DOI: 10.1016/j.ejphar.2012.06.017.10.1016/j.ejphar.2012.06.017Suche in Google Scholar PubMed

Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature, 406, 775-781. DOI: 10.1038/35021219.10.1038/35021219Suche in Google Scholar PubMed

Winter, E., Chiaradia, L. D., de Cordova, C. A. S., Nunes, R. J., Yunes, R. A., & Creczynski-Pasa, T. B. (2010). Naphthylchalcones induce apoptosis and caspase activation in a leukemia cell line: The relationship between mitochondrial damage, oxidative stress, and cell death. Bioorganic & Medicinal Chemistry, 18, 8026-8034. DOI: 10.1016/j.bmc.2010.09.025.10.1016/j.bmc.2010.09.025Suche in Google Scholar PubMed

Wróblewski, A. E., Maniukiewicz, W., & Karolczak, W. (2000). Unusual reactivity of cis-2-benzoyl-1-benzyl-3-phenylaziridine with P-nucleophiles-ring opening vs. the Abramov reaction. Journal of the Chemical Societry, Perkin Transactions 1, 2000, 1433-1437. DOI: 10.1039/a909521g.10.1039/a909521gSuche in Google Scholar

Yousif, S. Y., Broome-Smith, J. K., & Spratt, B. G. (1985). Lysis of Escherichia coli by β-lactam antibiotics: Deletion analysis of the role of penicillin-binding proteins 1A and 1B. Journal of General Microbiology, 131, 2839-2845. DOI: 10.1099/00221287-131-10-2839.10.1099/00221287-131-10-2839Suche in Google Scholar PubMed

Zhao, P. L., Liu, C. L., Huang, W., Wang, Y. Z., & Yang, G. F. (2007). Synthesis and fungicidal evaluation of novel chalconebased strobilurin analogues. Journal of Agricultural and Food Chemistry, 55, 5697-5700. DOI: 10.1021/jf071064x. 10.1021/jf071064xSuche in Google Scholar PubMed

Received: 2014-11-5
Revised: 2015-2-13
Accepted: 2015-2-15
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Deferoxamine–paper for iron(III) and vanadium(V) sensing
  2. Integrated investigations for the characterisation of Roman lead-glazed pottery from Pompeii and Herculaneum (Italy)
  3. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples
  4. Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors
  5. Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts
  6. Displacement washing of soda rapeseed pulp
  7. Hydrovisbreaking of vacuum residue from Russian Export Blend: influence of brown coal, light cycle oil, or naphtha addition
  8. Antimicrobial properties and chemical composition of liquid and gaseous phases of essential oils
  9. Syntheses, structures and properties of isonicotinamidium, thionicotinamidium, 2- and 3-(hydroxymethyl)pyridinium nitrates
  10. Density of lithium fluoride–lithium carbonate-based molten salts
  11. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones
  12. Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents
  13. Application of polypyrrole nanowires for the development of a tyrosinase biosensor
  14. Synthesis of a sialic acid derivative of ristocetin aglycone as an inhibitor of influenza virus
  15. Erratum to “Ľubomír Vančo, Magdaléna Kadlečíková, Juraj Breza, Pavol Michniak, Michal Čeppan, Milena Reháková, Eva Belányiová, Beata Butvinová: Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy”, Chemical Papers 69 (4) 518–526 (2015)
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0113/html?lang=de
Button zum nach oben scrollen