Startseite Syntheses, structures and properties of isonicotinamidium, thionicotinamidium, 2- and 3-(hydroxymethyl)pyridinium nitrates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Syntheses, structures and properties of isonicotinamidium, thionicotinamidium, 2- and 3-(hydroxymethyl)pyridinium nitrates

  • Zuzana Lukačovičová EMAIL logo , Darina Lacková , Michal Brienik , Iveta Ondrejkovičová , Ondrej Záborský , Jana Doháňošová und Marian Koman
Veröffentlicht/Copyright: 15. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

New salts containing cations of selected pyridine derivatives of the composition [pyH]NO3, where py is 2-pyridylmethanol (2-(hydroxymethyl)pyridine, 2pm), 3-pyridylmethanol (3-(hydroxymethyl) pyridine, 3pm), isonicotinamide (4-(aminocarbonyl)-pyridine, inia) and thionicotinamide (4- (aminothiocarbonyl)pyridine, tnia) were synthesised using two methods. By the first method, the above salts were obtained from reaction mixtures prepared from Fe(NO3)3 ·9H2O and the appropriate pyridine derivative py in ethanol without the addition of acids. The protons required for protonation of the given pyridine derivatives are formed by the protolytic reaction of [Fe(H2O)6]3+, which acts as a cationic Brønstedt acid. These cations are present in the solid state of Fe(NO3)3 · 9H2O as well as in its solutions. Under the second procedure, the salts were prepared by a direct reaction of the selected pyridine derivative py with a diluted solution of HNO3. The first method affords crystals with lower yields but the second method produces microcrystals with higher yields. All the compounds were characterised by elemental analysis, infrared and NMR spectroscopic analyses and [3pmH]NO3 and [2pmH]NO3 by X-ray structure analysis also. [3pmH]NO3 crystallises in the monoclinic and [2pmH]NO3 in the triclinic system.

References

Allen, F. H. (2002). The Cambridge structural database: A quarter of a million crystal structures and rising. Acta Crystallographica Section B, 38, 380-388. DOI: 10.1107/s0108768102003890.10.1107/S0108768102003890Suche in Google Scholar

Ataç, A., Yurdakul, S,., & İde, S. (2006). Synthesis and vibrational spectroscopic studies of isonicotinamide metal(II) halide complexes. Journal of Molecular Structure, 783, 79-87. DOI: 10.1016/j.molstruc.2005.06.025.10.1016/j.molstruc.2005.06.025Suche in Google Scholar

Bell, R., Foxton, M. W., & Looker, B. E. (1986). G.B. Patent No. 2,166,737. London, UK: The Intellectual Property Office. Boča, M., Boča, R., Kickelbick, G., Linert, W., Svoboda, I., & Fuess, H. (2002). Novel complexes of 2,6-bis(benzthiazol-2-yl)pyridine. Inorganica Chimica Acta, 338, 36-50. DOI: 10.1016/s0020-1693(02)00900-3.10.1016/S0020-1693(02)00900-3Suche in Google Scholar

Boča, M., Kickelbick, G., & Fuess, H. (2004). The presence of iron(III) salts of oxo acids can result in protonation of amino groups. Chemical Papers, 58, 145-147.Suche in Google Scholar

Cąkır, S., Biçer, E., Aoki, K., & Co,skun, E. (2006). Structural features of a new [Fe(nicotinamide)2(H2O)4]·[Fe(H2O)6]· (SO4)2·2H2O complex. Crystal Research & Technology, 41, 314-320. DOI: 10.1002/crat.200510580.10.1002/crat.200510580Suche in Google Scholar

Castro, L. C. M., Bezier, D., Sortais, J. B., & Darcel, C. (2011). Iron dihydride complex as the pre-catalyst for efficient hydrosilylation of aldehydes and ketones under visible light activation. Advanced Synthesis & Catalysis, 353, 1279-1284. DOI: 10.1002/adsc.201000676.10.1002/adsc.201000676Suche in Google Scholar

Chen, L. Z. (2009). 4-Carbamoylpyridinium perchlorate. Acta Crystallographica Section E, 65, o2626. DOI: 10.1107/s1600536809039026.10.1107/S1600536809039026Suche in Google Scholar PubMed PubMed Central

Csöregh, I., Czugler, M., Törnroos, K. W., Weber, E., & Ahrendt, J. (1989). Unusual host properties. X-Ray structures of three salt-like crystalline aggregates of 1,1_-binaphthyl-8,8_-dicarboxylic acid. Journal of the Chemical Society, Perkin Transactions 2, 1989, 1491-1497. DOI: 10.1039/p29890001491.10.1039/P29890001491Suche in Google Scholar

Daskalova, L. I., Velcheva, E. A., & Binev, I. G. (2007). Changes in the IR spectra and structures of pyridine-3-carboxamidesd0 and -d2 caused bytheir conversion intoazanions-d0 and-d1: Experimental and computational studies. Journal of Molecular Structure, 826, 198-204. DOI: 10.1016/j.molstruc.2006.05.001.10.1016/j.molstruc.2006.05.001Suche in Google Scholar

Demir, S., Yilmaz, V. T., & Harrison, W. T. A. (2003). 2-(Hydroxymethyl)pyridinium dihydrogenphosphate. Acta Crystallographica Section C, 59, o378-o380. DOI: 10.1107/s0108270103011077.10.1107/S0108270103011077Suche in Google Scholar PubMed

Dieskau, A. P., Begouin, J. M., & Plietker, B. (2011). Bu4N[Fe(CO)3(NO)]-Catalyzed hydrosilylation of aldehydes and ketones. European Journal of Organic Chemistry, 27, 5291-5296. DOI: 10.1002/ejoc.201100717.10.1002/ejoc.201100717Suche in Google Scholar

Farrugia, L. J. (1997). ORTEP-3 for Windows - a version of ORTEP-III with a graphical user interface (GUI). Journal of Applied Crystallography, 30, 565-566. DOI: 10.1107/s0021889897003117.10.1107/S0021889897003117Suche in Google Scholar

Farrugia, L. J. (1999). WinGX suite for small-molecule singlecrystal crystallography. Journal of Applied Crystallography, 32, 837-838. DOI: 10.1107/s0021889899006020.10.1107/S0021889899006020Suche in Google Scholar

Fonari, M. S., Ganin, E. V., Tang, S. W., Wang, W. J., & Simonov, Y. A. (2007). Molecular complex of thionicotinamide with 18-membered crown ethers: Synthesis and crystal structures. Journal of Molecular Structure, 826, 89-95. DOI: 10.1016/j.molstruc.2006.04.034.10.1016/j.molstruc.2006.04.034Suche in Google Scholar

Gamov, G. A., Dushina, S. V., & Sharnin, V. A. (2014). Stability constants of nickel(II)-nicotinamide complexes in aqueous-ethanol solutions. Russian Journal of Physical Chemistry A, 88, 779-782. DOI: 10.1134/s0036024414050094.10.1134/S0036024414050094Suche in Google Scholar

Gholivand, K., Zare, K., Afshar, F., Shariatinia, Z., & Khavasi, H. R. (2007). 4-Carbamoylpyridinium dihydrogen phosphate. Acta Crystallographica Section E, 63, o4027-o4027. DOI: 10.1107/s1600536807042869.10.1107/S1600536807042869Suche in Google Scholar

Jona, E., Koman, M.,Melnik, M., & Mroziński, J. (1996). Structural investigation of nickel(II)-nicotinamide-solvent interactions in solid complexes. Crystal structure of [(Ni)H2O)4(NA)2](NO3)2·2H2O. Journal of Coordination Chemistry, 40, 167-176. DOI: 10.1080/00958979608024342.10.1080/00958979608024342Suche in Google Scholar

Katcka, M., & Urbański, T. (1968). NMR spectra of pyridine, picolines and hydrochlorides and of their hydrochlorides and methiodides. Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Chimiques, 16, 347-350.Suche in Google Scholar

Kupfer, K., & Tsoucarjs (1964). Etude de la structure de quelques derives pyridiniques. Bulletin de la Société Fran¸caise de Minéralogie et de Cristallographie, 87, 1-4. (in French) Lackova, D., Ondrejkovičova, I., Padělkova, Z., & Koman, M. (2014). Syntheses, crystal structures and IR spectra of isonicotinamide-isonicotinamidium bis(isonicotinamide)-tetrakis(isothiocyanato)ferrate(III) and isonicotinamidium chloride. Journal of Coordination Chemistry, 64, 1652-1663. DOI: 10.1080/00958972.2014.917634.10.1080/00958972.2014.917634Suche in Google Scholar

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M., & van de Streek, J. (2006). Mercury: Visualization and analysis of crystal structures. Journal of Applied Crystallography, 39, 453-457. DOI: 10.1107/s002188980600731x.10.1107/S002188980600731XSuche in Google Scholar

Martelli, A., Testai, L., Citi, V., Marino, A., Pugliesi, I., Barresi, E., Nesi, G., Rapposelli, S., Taliani, S., Da Settimo, F., Breschi, M. C., & Calderone, V. (2013). Arylthioamides as H2S donors: l-Cysteine-activated releasing properties and vascular effects in vitro and in vivo. ACS Medicinal Chemistry Letters, 4, 904-908. DOI: 10.1021/ml400239a.10.1021/ml400239aSuche in Google Scholar PubMed PubMed Central

Myers, R. F. (1984). U.S. Patent No. 34,428,935. Washington, DC, USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Nadeem, S., Bolte, M., Ahmad, S., Fazeelat, T., Tirmizi, S. A., Rauf, M. K., Sattar, S. A., Siddiq, S., Hameed, A., & Haider, S. Z. (2010). Synthesis, crystal structure, antibacterial and antiproliferative activites in vitro of palladium(II) complexes of triphenylphosphine and thioamides. Inorganica Chimica Acta, 363, 3261-3269. DOI: 10.1016/j.ica.2010.06.015.10.1016/j.ica.2010.06.015Suche in Google Scholar

Nakamoto, K. (1997). Infrared and Raman spectra of inorganic and coordination compound. New York, NY, USA: Wiley. Nurakhmetov, N. N., Erkasov, R. S., Omarova, R. A., & Mulkina, R. I. (1988). Spectroscopic research of compounds of inorganic acids with nicotinamide. Koordinatsionnaya Khimiya, 14, 1610-1612.Suche in Google Scholar

Olojo, R., & Simoyi, R. H. (2004). Oxyhalogen-sulfur chemistry: Kinetics and mechanism of the oxidation of thionicotinamide by peracetic acid. The Journal of Physical Chemistry A, 108, 1018-1023. DOI: 10.1021/jp036305s.10.1021/jp036305sSuche in Google Scholar

Ondrejkovičova, I., Mikoš, D., & Štefanikova, S. (2008). Preparation and characterization of diethylnicotinamidium perchlorate. Chemical Papers, 62, 536-540. DOI: 10.2478/s11696-008-0058-3.10.2478/s11696-008-0058-3Suche in Google Scholar

Ondrejkovičova, I., Wrzecion, M., Nahorska, M., & Mroziński, J. (2009). Five-coordinated iron(III) nicotinamide complexes. Polish Journal of Chemistry, 83, 1547-1553.Suche in Google Scholar

Ottley, L. A. M., Rodriguez, M. A., & Boyle, T. J. (2008). 2-(Hydroxymethyl)pyridinium chloride. Acta Crystallographica Section E, 64, o2233. DOI: 10.1107/s1600536808034922.10.1107/S1600536808034922Suche in Google Scholar

Pedireddi, V. R., Ranganathan, A., & Chatterjee, S. (1998). Layered structures formed by dinitrobenzoic acids. Tetrahedron Letters, 39, 9831-9834. DOI: 10.1016/s0040-4039(98)02244-8.10.1016/S0040-4039(98)02244-8Suche in Google Scholar

Perdih, F. (2012). 4-Carbamoylpyridin-1-ium 2,2,2-trichloroacetate. Acta Crystallographica Section E, 68, o2733. DOI: 10.1107/s1600536812035507.10.1107/S1600536812035507Suche in Google Scholar PubMed PubMed Central

Ramos-Lima, F. J., Quiroga, A. G., Perez, J. M., & Navarro-Ranninger, C. (2003). Preparation, characterization and cytotoxic activity of new compounds trans-[PtCl2NH3(3-(hydroxymethyl)-pyridine)] and trans-[PtCl2NH3(4-(hydroxymethyl)-pyridine)]. Polyhedron, 22, 3379-3381. DOI: 10.1016/j.poly.2003.08.011.10.1016/j.poly.2003.08.011Suche in Google Scholar

Sandoval-Chavez, C., Lopez-Cortes, J. G., Gutierrez-Hernandez, A. I., Ortega-Alfaro, M. C., Toscano, A., & Alvarez-Toledano, C. (2009). An expedient approach to ferrocenyl thioamides via Fischer carbanes. Journal of Organometallic Chemistry, 694, 3692-3700. DOI: 10.1016/j.jorganchem.2009.07.044.10.1016/j.jorganchem.2009.07.044Suche in Google Scholar

Sharif, S., Akkurt, M., Khan, I. U., Nadeem, S., Tirmizi, S. A., & Ahmad, S. (2009). 3-Carbamothioylpyridinium iodide. Acta Crystallographica Section E, 65, o2626. DOI: 10.1107/s1600536809035892.10.1107/S1600536809035892Suche in Google Scholar PubMed PubMed Central

Sheldrick, G. M. (1990). Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallographica Section A, 46, 467-473. DOI: 10.1107/s0108767390000277.10.1107/S0108767390000277Suche in Google Scholar

Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, 64, 112-122. DOI: 10.1107/s0108767307043930.10.1107/S0108767307043930Suche in Google Scholar PubMed

Siemens (1990). XEMP. Version 4.2. Siemens analytical X-ray instruments. Madison, WI, USA: Siemens.Suche in Google Scholar

Siemens (1994). XSCANS. Siemens analytical X-ray instruments. Madison, WI, USA: Siemens.Suche in Google Scholar

Sousa, E. H. S., Pontes, D. L., Diogenes, I. C. N., Lopes, L. G. F., Oliveira, J. S., Basso, L. A., Santos, D. S., & Moreira, I. S. (2005). Electron transfer kinetics and mechanistic study of the thionicotinamide coordinated to the pentacyanoferrate(III)/(II) complexes: A model system for the in vitro activation of thioamides anti-tuberculosis drugs. Journal of Inorganic Biochemistry, 99, 368-375. DOI: 10.1016/j.jinorgbio.2004.10.004.10.1016/j.jinorgbio.2004.10.004Suche in Google Scholar

Stahl, P. H., & Wermuth, C. G. (2011). Pharmaceutical salts: Properties, selection and use. Weinheim, Germany: Wiley.Suche in Google Scholar

Suzuki, Y., Tomizawa, H., & Miki, E. (1999). Reaction of hydrous nitrosylruthenium trichloride with 2-pyridinemethanol. Inorganica Chimica Acta, 290, 36-43. DOI: 10.1016/s0020-1693(99)00109-7.10.1016/S0020-1693(99)00109-7Suche in Google Scholar

Štefanikova, S., Ondrejkovičova, I., Koman, M., Lis, T., Mroziński, J., & Wrzecion, M. (2008). Physical properties of a new iron(III) complex, [3-pmH·3-pm][Fe(NCS)4(3-pm)2]. Journal of Coordination Chemistry, 61, 3895-3903. DOI: 10.1080/00958970802178489.10.1080/00958970802178489Suche in Google Scholar

Tirmizi, S. A., Nadeem, S., Hameed, A., Wattoo, M. H. S., Anwar, A., Ansari, Z. A., & Ahmad, S. (2009). Synthesis, spectral characterization and antibacterial studies of palladium(II) complexes of heterocyclic thiones. Spectroscopy, 23, 299-306. DOI 10.3233/spe-2009-0387.10.1155/2009/763231Suche in Google Scholar

Tothadi, S., & Desiraju, G. R. (2012). Unusual co-crystal of isonicotinamide: The structural landscape in crystal engineering. Philosophical Transactions of the Royal Society A, 370, 2900-2915. DOI: 10.1098/rsta.2011.0309.10.1098/rsta.2011.0309Suche in Google Scholar PubMed

Treu, O., Pinheiro, J. C., da Costa, E. B., Kondo, R. T., de Souza, R. A., Nogueira, V. M., & Mauro, A. E. (2006). Theoretical and experimental study of the infrared spectrum of isonicotinamide. Journal of Molecular Structure: Theochem, 763, 175-179. DOI: 10.1016/j.theochem.2005.08.046.10.1016/j.theochem.2005.08.046Suche in Google Scholar

Uçar, İ., Karabulut, B., Paaoğlu, H., Büyükgüngör, O., & Bulut, A. (2006). X-ray crystal structure and Cu2+ doped EPR studies of tetraaquabis(isonicotinamide)zinc(II) and cobalt(II) disaccharinate 1.5 hydrate single crystals. Journal of Molecular Structure, 787, 38-44. DOI: 10.1016/j.molstruc.2005.10.029.10.1016/j.molstruc.2005.10.029Suche in Google Scholar

Uhrecky, R., Padělkova, Z., Moncol, J., Koman, M., Dlhaň, Ľ., Titiš, J., & Boča, R. (2013). Synthesis, crystal structure, spectra and magnetic properties of new manganese(III) and iron(III) dipicolinate complexes. Polyhedron, 56, 9-17. DOI: 10.1016/j.poly.2013.03.026.10.1016/j.poly.2013.03.026Suche in Google Scholar

Wu, X. F., Sharif, M., Feng, J. B., Neumann, H., Pews-Davtyan, A., Langer, P., & Beller, M. (2013). A general and practical oxidation of alcohols to primary amides under metal-free conditions. Green Chemistry, 15, 1956-1961. DOI: 10.1039/c3gc40668g. 10.1039/c3gc40668gSuche in Google Scholar

Received: 2014-9-9
Revised: 2015-1-12
Accepted: 2015-1-12
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Deferoxamine–paper for iron(III) and vanadium(V) sensing
  2. Integrated investigations for the characterisation of Roman lead-glazed pottery from Pompeii and Herculaneum (Italy)
  3. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples
  4. Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors
  5. Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts
  6. Displacement washing of soda rapeseed pulp
  7. Hydrovisbreaking of vacuum residue from Russian Export Blend: influence of brown coal, light cycle oil, or naphtha addition
  8. Antimicrobial properties and chemical composition of liquid and gaseous phases of essential oils
  9. Syntheses, structures and properties of isonicotinamidium, thionicotinamidium, 2- and 3-(hydroxymethyl)pyridinium nitrates
  10. Density of lithium fluoride–lithium carbonate-based molten salts
  11. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones
  12. Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents
  13. Application of polypyrrole nanowires for the development of a tyrosinase biosensor
  14. Synthesis of a sialic acid derivative of ristocetin aglycone as an inhibitor of influenza virus
  15. Erratum to “Ľubomír Vančo, Magdaléna Kadlečíková, Juraj Breza, Pavol Michniak, Michal Čeppan, Milena Reháková, Eva Belányiová, Beata Butvinová: Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy”, Chemical Papers 69 (4) 518–526 (2015)
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0105/html?lang=de
Button zum nach oben scrollen