Startseite Ultra-trace arsenic and mercury speciation and determination in blood samples by ionic liquid-based dispersive liquid–liquid microextraction combined with flow injection-hydride generation/cold vapor atomic absorption spectroscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ultra-trace arsenic and mercury speciation and determination in blood samples by ionic liquid-based dispersive liquid–liquid microextraction combined with flow injection-hydride generation/cold vapor atomic absorption spectroscopy

  • Hamid Shirkhanloo , Aisan Khaligh , Hassan Zavvar Mousavi EMAIL logo , Mohammad Mehdi Eskandari und Ali Akbar Miran-Beigi
Veröffentlicht/Copyright: 19. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A simple, fast, and sensitive method for speciation and determination of As (III, V) and Hg (II, R) in human blood samples based on ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) and flow injection hydride generation/cold vapor atomic absorption spectrometry (FI-HG/CV-AAS) has been developed. Tetraethylthiuram disulfide, mixed ionic liquids (hydrophobic and hydrophilic ILs) and acetone were used in the DLLME step as the chelating agent, extraction and dispersive solvents, respectively. Using a microwave assisted-UV system, organic mercury (R-Hg) was converted to Hg(II) and total mercury amount was measured in blood samples by the presented method. Total arsenic content was determined by reducing As(V) to As(III) with potassium iodide and ascorbic acid in a hydrochloric acid solution. Finally, As(V) and R-Hg were determined by mathematically subtracting the As(III) and Hg(II) content from the total arsenic and mercury, respectively. Under optimum conditions, linear range and detection limit (3σ) of 0.1-5.0 μg L−1 and 0.02 μg L−1 for As(III) and 0.15-8.50 μg L−1 and 0.03 μg L−1 for Hg(II) were achieved, respectively, at low RSD values of < 4 % (N = 10). The developed method was successfully applied to determine the ultratrace amounts of arsenic and mercury species in blood samples; the validation of the method was performed using standard reference materials.

References

Ahmed, R., & Stoeppler, M. (1986). Decomposition and stability studies of methylmercury in water using cold vapour atomic absorption spectrometry. The Analyst, 111, 1371-1374. DOI: 10.1039/an9861101371.10.1039/an9861101371Suche in Google Scholar PubMed

Bagheri, H., & Gholami, A. (2001). Determination of very low levels of dissolved mercury(II) and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after preconcentration on a silica gel-2-mercaptobenzimidazol sorbent. Talanta, 55, 1141-1150. DOI: 10.1016/s0039-9140(01) 00546-x.Suche in Google Scholar

Campillo, N., Vi˜nas, P., López-García, I., & Hernández- Córdoba, M. (2000). Determination of arsenic in biological fluids by electrothermal atomic absorption spectrometry. The Analyst, 125, 313-316. DOI: 10.1039/a907596h.10.1039/a907596hSuche in Google Scholar PubMed

Capelo, J. L., Maduro, C., & Mota, A. M. (2004). Advanced oxidation processes for degradation of organomercurials: Determination of inorganic and total mercury in urine by FICV- AAS. Journal of Analytical Atomic Spectrometry, 19, 414-416. DOI: 10.1039/b314905f.10.1039/b314905fSuche in Google Scholar

Chen, Y. C., Amarasiriwardena, C. J., Hsueh, Y. M., & Christiani, D. C. (2002). Stability of arsenic species and insoluble arsenic in human urine. Cancer Epidemiology Biomarkers & Prevention, 11, 1427-1433.Suche in Google Scholar

Clarkson, T. W., Magos, L., & Myers, G. J. (2003). Human exposure to mercury: The three modern dilemmas. The Journal of Trace Elements in Experimental Medicine, 16, 321-343. DOI: 10.1002/jtra.10050.10.1002/jtra.10050Suche in Google Scholar

Dadfarnia, S., Haji Shabani, A. M., Shirani Bidabadi, M., & Jafari, A. A. (2010). A novel ionic liquid/micro-volume back extraction procedure combined with flame atomic absorption spectrometry for determination of trace nickel in samples of nutritional interest. Journal of Hazardous Materials, 173, 534-538. DOI: 10.1016/j.jhazmat.2009.08.118.10.1016/j.jhazmat.2009.08.118Suche in Google Scholar PubMed

Daye, M., Ouddane, B., Halwani, J., & Hamzeh, M. (2013). Solid phase extraction of inorganic mercury using 5-phenylazo-8-hydroxyquinoline and determination by cold vapor atomic fluorescence spectroscopy in natural water samples. The Scientific World Journal, 2013, 134565. DOI: 10.1155/2013/134565.10.1155/2013/134565Suche in Google Scholar PubMed PubMed Central

Diaz-Bone, R. A., Hollmann, M., Wuerfel, O., & Pieper, D. (2009). Analysis of volatile arsenic compounds formed by intestinal microorganisms: Rapid identification of new metabolic products by use of simultaneous EI-MS and ICPMS detection after gas chromatographic separation. Journal of Analytical Atomic Spectrometry, 24, 808-814. DOI: 10.1039/b822968f.10.1039/b822968fSuche in Google Scholar

Didi, M. A., Medjahed, B., & Benaouda, W. (2013). Adsorption by liquid-liquid extraction of Hg(II) from aqueous solutions using the 2-butyl-imidazolium di-(2-ethylhexyl) phosphate as ionic liquid. American Journal of Analytical Chemistry, 4, 40-47. DOI: 10.4236/ajac.2013.47a006.10.4236/ajac.2013.47A006Suche in Google Scholar

Dugo, G., La Pera, L., Lo Turco, V., & Di Bella, G. (2005). Speciation of inorganic arsenic in alimentary and environmental aqueous samples by using derivative anodic stripping chronopotentiometry (dASCP). Chemosphere, 61, 1093-1101. DOI: 10.1016/j.chemosphere.2005.03.049.10.1016/j.chemosphere.2005.03.049Suche in Google Scholar PubMed

Faniband, M., Lindh, C. H., & J¨onsson, B. (2014). Human biological monitoring of suspected endocrine-disrupting compounds. Asian Journal of Andrology, 16, 5-16. DOI: 10.4103/1008-682x.122197.10.4103/1008-682X.122197Suche in Google Scholar PubMed PubMed Central

Gallignani, M., Bahsas, H., Brunetto, M. R., Burguera, M., Burguera, J. L., & Petit de Pe˜na, Y. (1998). A time-based flow injection-cold vapor-atomic absorption spectrometry system with on-line microwave sample pre-treatment for the determination of inorganic and total mercury in urine. Analytica Chimica Acta, 369, 57-67. DOI: 10.1016/s0003-2670(98)00217-7.10.1016/S0003-2670(98)00217-7Suche in Google Scholar

Gao, Y., Shi, Z. M., Long, Z., Wu, P., Zheng, C. B., & Hou, X. D. (2012). Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchemical Journal, 103, 1-14. DOI: 10.1016/j.microc.2012.02.001.10.1016/j.microc.2012.02.001Suche in Google Scholar

Hineman, A. (2012). Determination of as, se and hg in waters by hydride generation/cold vapor atomic absorption spectroscopy. Ontario, Canada: PerkinElmer. Retrieved October 2014 from http://www.perkinelmer.com/cmsresources/images/44-130442apppinaacle-toxicmetalsinwaterbyhgcvaa.pdf Suche in Google Scholar

Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133, 1-16. DOI: 10.1016/s0378-4274(02)00084-x.10.1016/S0378-4274(02)00084-XSuche in Google Scholar

Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences, 123, 305-332. DOI: 10.1093/toxsci/kfr184.10.1093/toxsci/kfr184Suche in Google Scholar PubMed PubMed Central

Jackson, B. P., & Bertsch, P. M. (2001). Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environmental Science & Technology, 35, 4868-4873. DOI: 10.1021/es0107172.10.1021/es0107172Suche in Google Scholar PubMed

Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J., & Valko, M. (2011). Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31, 95-107. DOI: 10.1002/jat.1649.10.1002/jat.1649Suche in Google Scholar PubMed

Kapaj, S., Peterson, H., Liber, K., & Bhattacharya, P. (2006). Human health effects from chronic arsenic poisoning - a review. Journal of Environmental Science and Health, Part A, 41, 2399-2428. DOI: 10.1080/10934520600873571.10.1080/10934520600873571Suche in Google Scholar PubMed

Khatoon-Abadi, A., Sheikh Hoseini, A., & Khalili, B. (2008). Effect of mercury on the human health and environment: An overview. International Journal of Food Safety, Nutrition and Public Health, 1, 33-50. DOI: 10.1504/ijfsnph. 2008.018854.Suche in Google Scholar

Kim, B. G., Jo, E. M., Kim, G. Y., Kim, D. S., Kim, Y. M., Kim, R. B., Suh, B. S., & Hong, Y. S. (2012). Analysis of methylmercury concentration in the blood of Koreans by using cold vapor atomic fluorescence spectrophotometry. Annals of Laboratory Medicine, 32, 31-37. DOI: 10.3343/alm.2012.32.1.31.10.3343/alm.2012.32.1.31Suche in Google Scholar PubMed PubMed Central

Koh, J. H., Kwon, Y. S., & Pak, Y. N. (2005). Separation and sensitive determination of arsenic species (As3+ /As5+) using the yeast-immobilized column and hydride generation in ICP-AES. Microchemical Journal, 80, 195-199. DOI: 10.1016/j.microc.2004.07.011.10.1016/j.microc.2004.07.011Suche in Google Scholar

Lepp, N. (2008). Biological monitoring: Theory and applications. Journal of Environmental Quality, 37, 1997. DOI: 10.2134/jeq2008.0012br.10.2134/jeq2008.0012brSuche in Google Scholar

Li, Y. F., Chen, C. Y., Li, B.,Wang, Q., Wang, J. X., Gao, Y. X., Zhao, Y. L., & Chai, Z. F. (2007). Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 22, 925-930. DOI: 10.1039/b703310a.10.1039/b703310aSuche in Google Scholar

Liang, P., & Sang, H. B. (2008). Determination of trace lead in biological and water samples with dispersive liquid-liquid microextraction preconcentration. Analytical Biochemistry, 380, 21-25. DOI: 10.1016/j.ab.2008.05.008.10.1016/j.ab.2008.05.008Suche in Google Scholar PubMed

Liu, J. F., Jiang, G. B., Chi, Y. G., Cai, Y. Q., Zhou, Q. X., & Hu, J. T. (2003). Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Analytical Chemistry, 75, 5870-5876. DOI: 10.1021/ac034506m.10.1021/ac034506mSuche in Google Scholar PubMed

Martinis, E. M., Olsina, R. A., Altamirano, J. C., & Wuilloud, R. G. (2008). Sensitive determination of cadmium in water samples by room temperature ionic liquid-based preconcentration and electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 628, 41-48. DOI: 10.1016/j.aca. 2008.09.001.Suche in Google Scholar

Niemelä, M., Perämäki, P., & Piispanen, J. (2003). Microwave sample-digestion procedure for determination of arsenic in moss samples using electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 375, 673-678. DOI: 10.1007/s00216-003-1776-6.10.1007/s00216-003-1776-6Suche in Google Scholar PubMed

Perna, L., LaCroix-Fralish, A., & St¨urup, S. (2005). Determination of inorganic mercury and methylmercury in zooplankton and fish samples by speciated isotopic dilution GC-ICP-MS after alkaline digestion. Journal of Analytical Atomic Spectrometry, 20, 236-238. DOI: 10.1039/b410545a.10.1039/B410545ASuche in Google Scholar

Pistón, M., Silva, J., Pérez-Zambra, R., Dol, I., & Knochen, M. (2012). Automated method for the determination of total arsenic and selenium in natural and drinking water by HGAAS. Environmental Geochemistry and Health, 34, 273-278. DOI: 10.1007/s10653-011-9436-9.10.1007/s10653-011-9436-9Suche in Google Scholar PubMed

Rezaee, M., Assadi, Y., Milani Hosseini, M. R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A, 1116, 1-9. DOI: 10.1016/j.chroma.2006.03.007.10.1016/j.chroma.2006.03.007Suche in Google Scholar PubMed

Ritsema, R., & van Heerde, E. (1997). Determination of total arsenic in urine by hydride AAS after UV-digestion. Fresenius’ Journal of Analytical Chemistry, 358, 838-843. DOI: 10.1007/s002160050519.10.1007/s002160050519Suche in Google Scholar

Rivas, R. E., López-García, I., & Hernández-Córdoba, M. (2009). Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 329-333. DOI: 10.1016/j.sab.2009.03.007. 10.1016/j.sab.2009.03.007Suche in Google Scholar

Rodrigues, J. L., Alvarez, C. R., Fari˜nas, N. R., Nevado, J. J. B., Barbosa, F., Jr., & Martín-Doimeadios, R. C. R. (2011). Mercury speciation in whole blood by gas chromatography coupled to ICP-MS with a fast microwave-assisted sample preparation procedure. Journal of Analytical Atomic Spectrometry, 26, 436-442. DOI: 10.1039/c004931j.10.1039/C004931JSuche in Google Scholar

Salaün, P., Planer-Friedrich, B., & van den Berg, C. M. C. (2007). Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Analytica Chimica Acta, 585, 312-322. DOI: 10.1016/j.aca.2006.12.048.10.1016/j.aca.2006.12.048Suche in Google Scholar PubMed

Sarafraz-Yazdi, A., & Amiri, A. (2010). Liquid-phase microextraction. TrAC Trends in Analytical Chemistry, 29, 1-14. DOI: 10.1016/j.trac.2009.10.003.10.1016/j.trac.2009.10.003Suche in Google Scholar

Schober, S. E., Sinks, T. H., Jones, R. L., Bolger, P. M.,McDowell, M., Osterloh, J., Garrett, E. S., Canady, R. A., Dillon, C. F., & Sun, Y. (2003). Blood mercury levels in US children and women of childbearing age, 1999-2000. Jama, 289, 1667-1674. DOI: 10.1001/jama.289.13.1667.10.1001/jama.289.13.1667Suche in Google Scholar PubMed

Senn, E. P. (1997). Controlling metallic mercury exposure in the workplace: A guide for employers. Trenton, NJ, USA: Diane.Suche in Google Scholar

Serafimovski, I., Karadjova, I. B., Stafilov, T., & Tsalev, D. L. (2006). Determination of total arsenic and toxicologically relevant arsenic species in fish by using electrothermal and hydride generation atomic absorption spectrometry. Microchemical Journal, 83, 55-60. DOI: 10.1016/j.microc.2006.01. 021.Suche in Google Scholar

Shemirani, F., Baghdadi, M., & Ramezani, M. (2005). Preconcentration and determination of ultra trace amounts of arsenic( III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry. Talanta, 65, 882-887. DOI: 10.1016/j.talanta.2004.08.009.10.1016/j.talanta.2004.08.009Suche in Google Scholar PubMed

Shirkhanloo, H., Rouhollahi, A., & Mousavi, H. Z. (2011). Ultra-trace arsenic determination in urine and whole blood samples by flow injection-hydride generation atomic absorption spectrometry after preconcentration and speciation based on dispersive liquid-liquid microextraction. Bulletin of the Korean Chemical Society, 32, 3923-3927. DOI: 10.5012/bkcs.2011.32.11.3923.10.5012/bkcs.2011.32.11.3923Suche in Google Scholar

Sounderajan, S., Udas, A. C., & Venkataramani, B. (2007). Characterization of arsenic(V) and arsenic(III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy. Journal of Hazardous Materials, 149, 238-242. DOI: 10.1016/j.jhazmat. 2007.07.035.Suche in Google Scholar

Tchounwou, P. B., Patlolla, A. K., & Centeno, J. A. (2003). Invited reviews: Carcinogenic and systemic health effects associated with arsenic exposure - a critical review. Toxicologic Pathology, 31, 575-588. DOI: 10.1080/01926230390242007.10.1080/01926230390242007Suche in Google Scholar PubMed

Torres, D. P., Borges, D. L. G., Frescura, V. L. A., & Curtius, A. J. (2009). A simple and fast approach for the determination of inorganic and total mercury in aqueous slurries of biological samples using cold vapor atomic absorption spectrometry and in situ oxidation. Journal of Analytical Atomic Spectrometry, 24, 1118-1122. DOI: 10.1039/b816622f.10.1039/b816622fSuche in Google Scholar

Tsoi, Y. K., Tam, S., & Leung, K. S. Y. (2010). Rapid speciation of methylated and ethylated mercury in urine using headspace solid phase microextraction coupled to LC-ICPMS. Journal of Analytical Atomic Spectrometry, 25, 1758-1762. DOI: 10.1039/c0ja00024h.10.1039/c0ja00024hSuche in Google Scholar

Wang,M.,Feng,W. Y., Shi, J. W., Zhang, F.,Wang, B., Zhu, M. T., Li, B., Zhao, Y. L., & Chai, Z. F. (2007). Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta, 71, 2034-2039. DOI: 10.1016/j.talanta.2006.09.012.10.1016/j.talanta.2006.09.012Suche in Google Scholar PubMed

Yoshimura, Y., Endo, Y., Shimoda, Y., Yamanaka, K., & Endo, G. (2011). Acute arsine poisoning confirmed by speciation analysis of arsenic compounds in the plasma and urine by HPLC-ICP-MS. Journal of Occupational Health, 53, 45-49. DOI: 10.1539/joh.L10108.10.1539/joh.L10108Suche in Google Scholar PubMed

Yoshizawa, K., Rimm, E. B., Morris, J. S., Spate, V. L., Hsieh, C. C., Spiegelman, D., Stampfer, M. J., & Willett, W. C. (2002). Mercury and the risk of coronary heart disease in men. New England Journal of Medicine, 347, 1755-1760. DOI: 10.1056/nejmoa021437.10.1056/NEJMoa021437Suche in Google Scholar PubMed

Zhang, L., Morita, Y., Sakuragawa, A., & Isozaki, A. (2007). Inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Talanta, 72, 723-729. DOI: 10.1016/j.talanta. 2006.12.001. Suche in Google Scholar

Received: 2014-8-23
Revised: 2014-11-1
Accepted: 2014-11-6
Published Online: 2015-3-19
Published in Print: 2015-6-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0086/html?lang=de
Button zum nach oben scrollen