Home Morphology, structure, and photoactivity of two types of graphene oxide–TiO2 composites
Article
Licensed
Unlicensed Requires Authentication

Morphology, structure, and photoactivity of two types of graphene oxide–TiO2 composites

  • Anca Peter EMAIL logo , Leonard Mihaly-Cozmuta , Anca Mihaly-Cozmuta , Camelia Nicula , Agnieszka Jastrzębska , Patrycja Kurtycz and Andrzej Olszyna
Published/Copyright: March 19, 2015
Become an author with De Gruyter Brill

Abstract

Two types of graphene oxide-TiO2 composites were prepared: one by including graphene oxide flakes in the TiO2 sol, followed by thermal treatment (GI composite) at 300°C, and the second by including graphene oxide flakes in the calcined (at 500°C) TiO2 xerogel (GII composite). The composites were characterized by SEM, TEM-EDS, TEM-SADP, STEM-HAADF, HRTEM coupled with FT, XRD, and XPS. Photocatalysis results were fitted to different kinetic models (pseudo-first and pseudo-second kinetics, intraparticle Weber-Morris diffusion, film diffusion, and external mass transfer). The results showed that by introducing graphene oxide flakes in the TiO2 sol, followed by thermal treatment at 300°C (GI composite), an efficient graphene oxide-TiO2 catalyst with high specific surface area, heterogeneity, and many graphitized areas can be obtained. Complete crystallization of the composite is not the key issue for the best photoactivity achievement. The rate limiting step in the photocatalytic process is the photooxidation of SA molecules on the TiO2 surface.

References

Ansón-Casaos, A., Tacchini, I., Unzue, A., & Martinez, M. T. (2013). Combined modification of a TiO2 photocatalyst with two different carbon forms. Applied Surface Science, 270, 675-684. DOI: 10.1016/j.apsusc.2013.01.120.10.1016/j.apsusc.2013.01.120Search in Google Scholar

Apiratikul, R., & Pavasant, P. (2008). Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chemical Engineering Journal, 144, 245-258. DOI: 10.1016/j.cej.2008.01.038.10.1016/j.cej.2008.01.038Search in Google Scholar

Baia, L., Diamandescu, L., Barbu-Tudoran, L., Peter, A., Melinte, G., Danciu, V., & Baia, M. (2011). Efficient dual functionality of highly porous nanocomposites based on TiO2 and noble metal particles. Journal of Alloys and Compounds, 509, 2672-2678. DOI: 10.1016/j.jallcom.2010.11.154.10.1016/j.jallcom.2010.11.154Search in Google Scholar

Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902-907. DOI: 10.1021/nl0731872.10.1021/nl0731872Search in Google Scholar PubMed

Bennett, S. W., & Keller, A. A. (2011). Comparative photoactivity of CeO2, γ-Fe2O3, TiO2 and ZnO in various aqueous systems. Applied Catalysis B: Environmental, 102, 600-607. DOI: 10.1016/j.apcatb.2010.12.045.10.1016/j.apcatb.2010.12.045Search in Google Scholar

Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, J., & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146, 351-355. DOI: 10.1016/j.ssc.2008.02.024.10.1016/j.ssc.2008.02.024Search in Google Scholar

Brinker, C. J., & Scherrer, G. W. (1990). Sol-gel science (chapter 6, pp. 23). San Diego, CA, USA: Academic Press.Search in Google Scholar

Chang, B.Y. S., Huang, N. M.,An’amt, M. N.,Marlinda,A. R., Norazriena, Y., Muhamad, M. R., Harrison, I., Lim, H. N., & Chia, C. H. (2012). Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite. International Journal of Nanomedicine, 7, 3379-3387. DOI: 10.2147/ijn.s28189.10.2147/IJN.S28189Search in Google Scholar PubMed PubMed Central

Choi, Y. S., Umebayashi, T., & Yoshikawa, M. (2004). Fabrication and characterization of C-doped anatase TiO2 photocatalysts. Journal of Materials Science, 39, 1837-1839. DOI: 10.1023/b:jmsc.0000016198.73153.31.10.1023/B:JMSC.0000016198.73153.31Search in Google Scholar

Cong, Y., Li, X. K., Qin, Y., Dong, Z. J., Yuan, G. M., Cui, Z. W., & Lai, X. J. (2011). Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Applied Catalysis B: Environmental, 107, 128-134. DOI: 10.1016/j.apcatb.2011.07.005.10.1016/j.apcatb.2011.07.005Search in Google Scholar

Cohen-Tanugi, D. H. (2012). Nanoporous graphene as a desalination membrane: A computational study. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA. http://hdl.handle.net/1721.1/76129Search in Google Scholar

Gao, P., & Sun, D. D. (2014). Hierarchical sulfonated graphene oxide-TiO2 composites for highly efficient hydrogen production with a wide pH range. Applied Catalysis B: Environmental, 147, 888-896. DOI: 10.1016/j.apcatb.2013.10.025.10.1016/j.apcatb.2013.10.025Search in Google Scholar

Jastrzębska, A. M., Kurtycz, P., & Olszyna, A. R. (2012). Recent advances in graphene family materials toxicity investigations. Journal of Nanoparticle Research, 14, 1320-1328. DOI: 10.1007/s11051-012-1320-8.10.1007/s11051-012-1320-8Search in Google Scholar PubMed PubMed Central

Jastrzębska, A. M., Olszyna, A. R., Jureczko J., & Kunicki, A. (2014). New reduced graphene oxide/alumina (RGO/Al2O3) nanocomposite: Innovative method of synthesis and characterization. International Journal of Applied Ceramic Technology, in press. DOI: 10.1111/ijac.12183.10.1111/ijac.12183Search in Google Scholar

Jiang, G. D., Lin, Z. F., Chen, C., Zhu, L. H., Chang, Q., Wang, N., Wei, W., & Tang, H. Q. (2011). TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon, 49, 2693-2071. DOI: 10.1016/j.carbon.2011.02.059.10.1016/j.carbon.2011.02.059Search in Google Scholar

Kądzioła, K., Piwo´nski, I., Kisielewska, A., Szczukocki, D., Krawczyk, B., & Sielski, J. (2014). The photoactivity of titanium dioxide coatings with silver nanoparticles prepared by sol-gel and reactive magnetron sputtering methods - comparative studies. Applied Surface Science, 288, 503-512. DOI: 10.1016/j.apsusc.2013.10.061.10.1016/j.apsusc.2013.10.061Search in Google Scholar

Khalifa, Z. S. (2014). Electronic structure changes of TiO2 thin films due to electrochromism. Solar Energy Materials and Solar Cells, 124, 186-191. DOI: 10.1016/j.solmat.2014.02.005.10.1016/j.solmat.2014.02.005Search in Google Scholar

Krýsa, J., Paušova, Š., Zlamal, M., & Mills, A. (2012). Photoactivity assessment of TiO2 thin films using Acid Orange 7 and 4-chlorophenol as model compounds. Part I: Key dependencies. Journal of Photochemistry and Photobiology A: Chemistry, 250, 66-71. DOI: 10.1016/j.jphotochem.2012.09.009.10.1016/j.jphotochem.2012.09.009Search in Google Scholar

Lee, C. G., Wei, X. D., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385-388. DOI: 10.1126/ science.1157996.10.1126/science.1157996Search in Google Scholar PubMed

Lee, E. W., Hong, J. Y., Kang, H. Y., & Jang, J. S. (2012). Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visiblelight irradiation. Journal of Hazardous Materials, 219-220, 13-18. DOI: 10.1016/j.jhazmat.2011.12.033.10.1016/j.jhazmat.2011.12.033Search in Google Scholar PubMed

Li, X. L., Peng, Q., Yi, J. X.,Wang, X., & Li, Y. D. (2006). Near monodisperse TiO2 nanoparticles and nanorods. Chemistry - A European Journal, 12, 2383-2391. DOI: 10.1002/chem. 200500893.Search in Google Scholar

Liu, H., He, Y. H., & Liang, X. (2013a). Magnetic photocatalysts containing TiO2 nanocrystals: Morphology effect on photocatalytic activity. Journal of Materials Research, 29, 98-106. DOI: 10.1557/jmr.2013.233. 10.1557/jmr.2013.233Search in Google Scholar

Liu, L., Bai, H. W., Liu, J. C., & Sun, D. D. (2013b). Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. Journal of Hazardous Materials, 261, 214-223. DOI: 10.1016/j.jhazmat.2013.07.034. 10.1016/j.jhazmat.2013.07.034Search in Google Scholar PubMed

Mihaly Cozmuta, L., Mihaly Cozmuta, A., Peter, A., Nicula, C., Nsimba, E. B., & Tutu, H. (2012). The influence of pH on the adsorption of lead by Na-clinoptilolite: Kinetic and equilibrium studies. Water SA, 38, 269-278. DOI: 10.4314/wsa.v38i2.13.10.4314/wsa.v38i2.13Search in Google Scholar

Min, Y. L., Zhang, K., Zhao, W., Zheng, F. C., Chen, Y. C., & Zhang, Y. C. (2012). Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chemical Engineering Journal, 193-194, 203-210. DOI: 10.1016/j.cej.2012.04.047.10.1016/j.cej.2012.04.047Search in Google Scholar

Neppolian, B., Bruno, A., Bianchi, C. L., & Ashokkumar, M. (2012). Graphene oxide based Pt-TiO2 photocatalyst: Ultrasound assisted synthesis, characterization and catalytic efficiency. Ultrasonics Sonochemistry, 19, 9-15. DOI: 10.1016/j.ultsonch.2011.05.018.10.1016/j.ultsonch.2011.05.018Search in Google Scholar

Padervand, M., Tasviri, M., & Gholami, M. R. (2011). Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite. Chemical Papers, 65, 280-288. DOI: 10.2478/s11696-011-0013-6.10.2478/s11696-011-0013-6Search in Google Scholar

Park, S. J., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4, 217-214. DOI: 10.1038/nnano.2009.58.10.1038/nnano.2009.58Search in Google Scholar

Peter, A., Popescu, I. C., Indrea, E., Marginean, P., & Danciu, V. (2007). The influence of the heat treatment on the photoactivity of the TiO2-SiO2 aerogels. Studia Universitatis Babes-Bolyai, Chemia, 52(3), 105-111.Search in Google Scholar

Peter, A., Baia, L., Baia, M., Indrea, E., Toderas, F., Danciu, V., Cosoveanu, V., & Diamandescu, L. (2010). Porous Au- TiO2 aerogels nanoarchitectures for photodegradation processes. Journal of Optoelectronics and Advanced Materials, 12, 1071-1077.Search in Google Scholar

Peter, A., Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Nicula, C., Barbu Tudoran, L., Vulpoi, A., & Baia, L. (2014). Photocatalytic efficiency of zeolite-based TiO2 composites for reduction of Cu (II): Kinetic models. International Journal of Applied Ceramic Technology, 11, 568-581. DOI: 10.1111/ijac.12046.10.1111/ijac.12046Search in Google Scholar

Shi, M., Shen, J. F., Ma, H. W., Li, Z. Q., Lu, X., Li, N., & Ye, M. X. (2012). Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. Colloids and Surface A: Physicochemical Engineering Aspects, 405, 30-37. DOI: 10.1016/j.colsurfa.2012.04.031.10.1016/j.colsurfa.2012.04.031Search in Google Scholar

Song, P., Zhang, X. Y., Sun, M. X., Cui, X. L., & Lin, Y. H. (2012). Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale, 2012, 1800-1804. DOI: 10.1039/c2nr11938b.10.1039/c2nr11938bSearch in Google Scholar

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Ji, Y. Y., Wu, Y., Nguyen, S. B. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558-1565. DOI: 10.1016/j.carbon.2007.02.034.10.1016/j.carbon.2007.02.034Search in Google Scholar

Tomkiewicz, M., (2000). Scaling properties in photocatalysis. Catalysis Today, 58, 115-123. DOI: 10.1016/s0920-5861(00)00246-7.10.1016/S0920-5861(00)00246-7Search in Google Scholar

Wang, H., Quan, X., Yu, H. T., & Chen, S. (2008). Fabrication of a TiO2/carbon nanowall heterojunction and its photocatalytic ability. Carbon, 46, 1126-1132. DOI: 10.1016/j.carbon.2008.04.016.10.1016/j.carbon.2008.04.016Search in Google Scholar

Wang, F., & Zhang, K. (2011). Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. Journal of Molecular Catalysis A: Chemical, 345, 101-107. DOI: 10.1016/j.molcata.2011.05.026.10.1016/j.molcata.2011.05.026Search in Google Scholar

Xu, C. K., Killmeyer, R., Gray, M. L., & Khan, S. U. M. (2006).Enhanced carbon doping of n-TiO2 thin films for photoelectrochemical water splitting. Electrochemical Communications, 8, 1650-1654. DOI: 10.1016/j.elecom.2006.07.018.10.1016/j.elecom.2006.07.018Search in Google Scholar

Xu, Y. J., Zhuang, Y. B., & Fu, X. Z. (2010). New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: A case study on degradation of benzene and methyl orange. The Journal of Physical Chemistry C, 114, 2669-2676. DOI: 10.1021/jp909855p.10.1021/jp909855pSearch in Google Scholar

Yang, J. K., Zhang, X. T., Li, B., Liu, H., Sun, P. P., Wang, C. H., Wang, L. L., & Liu, Y. C. (2014). Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 584, 180-184. DOI: 10.1016/j.jallcom.2013.08.203.10.1016/j.jallcom.2013.08.203Search in Google Scholar

Zhang, Q., He, Y. Q., Chen, X. G., Hu, D. H., Li, L. J., Yin, T., & Ji, L. L. (2011). Structure and photocatalytic properties of TiO2-Graphene Oxide intercalated composite. Chinese Science Bulletin, 56, 331-339. DOI: 10.1007/s11434-010-3111-x.10.1007/s11434-010-3111-xSearch in Google Scholar

Zhao, D. L., Sheng, G. D., Chen, C. L., & Wang, X. K. (2012).Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Applied Catalysis B: Environmental, 111-112, 303-308. DOI: 10.1016/j.apcatb.2011.10.012. 10.1016/j.apcatb.2011.10.012Search in Google Scholar

Received: 2014-9-11
Revised: 2014-12-2
Accepted: 2014-12-3
Published Online: 2015-3-19
Published in Print: 2015-6-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0088/html
Scroll to top button