Startseite Determination of formaldehyde by flow injection analysis with spectrophotometric detection exploiting brilliant green–sulphite reaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determination of formaldehyde by flow injection analysis with spectrophotometric detection exploiting brilliant green–sulphite reaction

  • Lúcio Bolognesi , Eder J. dos Santos und Gilberto Abate EMAIL logo
Veröffentlicht/Copyright: 19. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A method for the determination of formaldehyde by flow injection analysis with spectrophotometric detection is proposed, based on retarding the reaction between brilliant green and sulphite by the addition of formaldehyde; this was investigated for formaldehyde quantification in extracts from wood-based panels. For the first time, a heating step was explored, providing a sample throughput of 50 analyses per hour, with a limit of detection of 0.02 mg L−1 and linearity of 0.20-3.0 mg L−1, which was adequate for the expected range of formaldehyde concentration in the extracts. The mean recovery observed for actual samples was in the range of 92-106 %, with a maximum relative standard deviation of 6.0 %. The paired t-test revealed no significant difference between this method and the official Nash method, demonstrating an appropriate accuracy and precision; the method is proposed as a simple, fast and inexpensive alternative for the routine determination of formaldehyde in an aqueous medium.

References

Abbasi, S., Esfandyarpour, M., Taher, M. A., & Daneshfar, A. (2007). Catalytic-kinetic determination of trace amount of formaldehyde by the spectrophotometric method with a bromate-Janus green system. Spectrochimica Acta Part A, 67, 578-581. DOI: 10.1016/j.saa.2006.06.046.10.1016/j.saa.2006.06.046Suche in Google Scholar

Afkhami, A., & Bagheri, H. (2012). Preconcentration of trace amounts of formaldehyde from water, biological and food samples using an efficient nanosized solid phase, and its de termination by a novel kinetic method. Microchimica Acta, 176, 217-227. DOI: 10.1007/s00604-011-0715-z.10.1007/s00604-011-0715-zSuche in Google Scholar

Blondel, A., & Plaisance, H. (2011). Screening of formaldehyde indoor sources and quantification of their emission using a passive sampler. Building and Environment, 46, 1284-1291. DOI: 10.1016/j.buildenv.2010.12.011.10.1016/j.buildenv.2010.12.011Suche in Google Scholar

Boran, S., Usta, M., & G¨um¨u¸skaya, E. (2011). Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin. International Journal of Adhesion & Adhesives, 31, 674-678. DOI: 10.1016/j.ijadhadh.2011.06.011.10.1016/j.ijadhadh.2011.06.011Suche in Google Scholar

Burgess, C. (2000). Valid analytical methods and procedures. Cambridge, UK: The Royal Society of Chemistry.Suche in Google Scholar

CEN (1992). European standard EN 120: 1992, Wood-based panel products - Determination of formaldehyde content - Extraction method called the perforator method. Brussels, Belgium: The European Committee for Standardization.Suche in Google Scholar

CEN (1995). European standard EN 717-2: 1995, Wood-based panel products - Determination of formaldehyde release - Part 2: Formaldehyde release by the gas analysis method. Brussels, Belgium: The European Committee for Standardization.Suche in Google Scholar

Ensafi, A. A., & Nazemi, Z. (2007). Determination of formaldehyde by its catalytic effect on the oxidation of pyrogallol red by bromate using flow-injection spectrophotometric detection. Journal of Analytical Chemistry, 62, 987-991. DOI: 10.1134/s1061934807100152.10.1134/S1061934807100152Suche in Google Scholar

Fagnani, E., Melios, C. B., Pezza, L., & Pezza, H. R. (2003). Chromotropic acid-formaldehyde reaction in strongly acidic media. The role of dissolved oxygen and replacement of concentrated sulphuric acid. Talanta, 60, 171-176. DOI: 10.1016/s0039-9140(03)00121-8.10.1016/S0039-9140(03)00121-8Suche in Google Scholar

Gigante, A. C., Gotardo, M. A., Tognolli, J. O., Pezza, L., & Pezza, H. R. (2004). Spectrophotometric determination of formaldehyde with chromotropic acid in phosphoric acid medium assisted by microwave oven. Microchemical Journal, 77, 47-51. DOI: 10.1016/j.microc.2003.12.002.10.1016/j.microc.2003.12.002Suche in Google Scholar

Kim, J., Kim S., Lee, K., Yoon, D., Lee, J., & Ju, D. Y. (2013). Indoor aldehydes concentration and emission rate of formaldehyde in libraries and private reading rooms. Atmospheric Environment, 71, 1-6. DOI: 10.1016/j.atmosenv. 2013.01.059.Suche in Google Scholar

Li, Q., Oshima, M., & Motomizu, S. (2007). Flow-injection spectrofluorometric determination of trace amounts of formaldehyde in water after derivatization with acetoacetanilide. Talanta, 72, 1675-1680. DOI: 10.1016/j.talanta.2007.01.054.10.1016/j.talanta.2007.01.054Suche in Google Scholar PubMed

Li, Q., Sritharathikhun, P., Oshima, M., & Motomizu, S. (2008). Development of novel detection reagent for simple and sensitive determination of trace amounts of formaldehyde and its application to flow injection spectrophotometric analysis. Analytica Chimica Acta, 612, 165-172. DOI: 10.1016/j.aca.2008.02.028.10.1016/j.aca.2008.02.028Suche in Google Scholar PubMed

Motyka, K., & Mikuška, P. (2004). Continuous fluorescence determination of formaldehyde in air. Analytica Chimica Acta, 518, 51-57. DOI: 10.1016/j.aca.2004.05.033.10.1016/j.aca.2004.05.033Suche in Google Scholar

Nash, T. (1953). The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochemical Journal, 55, 416-421.10.1042/bj0550416Suche in Google Scholar

Ongwandee, M., Moorinta, R., Panyametheekul, S., Tangbanluekal, C., & Morrison, G. (2011). Investigation of volatile organic compounds in office buildings in Bangkok, Thailand: Concentrations, sources, and occupant symptoms. Building and Environment, 46, 1512-1522. DOI: 10.1016/j.buildenv.2011.01.026.10.1016/j.buildenv.2011.01.026Suche in Google Scholar

Park, B. D., Kang, E. C., Park, S. B., & Park, J. Y. (2011). Empirical correlations between test methods of measuring formaldehyde emission of plywood, particleboard and medium density fiberboard. European Journal of Wood and Wood Products, 69, 311-316. DOI: 10.1007/s00107-010-0446-6.10.1007/s00107-010-0446-6Suche in Google Scholar

Risholm-Sundman, M., Larsen, A., Vestin, E., & Weibull, A. (2007). Formaldehyde emission-Comparison of different standard methods. Atmospheric Environment, 41, 3193-3202. DOI: 10.1016/j.atmosenv.2006.10.079.10.1016/j.atmosenv.2006.10.079Suche in Google Scholar

Safavi, A., & Ensafi, A. A. (1991). Flow-injection determination of traces of formaldehyde by the Brilliant Green-sulphite reaction with spectrophotometric detection. Analytica Chimica Acta, 252, 167-171. DOI: 10.1016/0003-2670(91)87211-o.10.1016/0003-2670(91)87211-OSuche in Google Scholar

Salem, M. Z. M., B¨ohm, M., Srba, J., & Beránková, J. (2012). Evaluation of formaldehyde emission from different types of wood-based panels and flooring materials using different standard test methods. Building and Environment, 49, 86-96. DOI: 10.1016/j.buildenv.2011.09.011.10.1016/j.buildenv.2011.09.011Suche in Google Scholar

Teshima, N., Fernández, S. K. M., Ueda, M., Nakai, H., & Sakai, T. (2011). Flow injection spectrophotometric determination of formaldehyde based on its condensation with hydroxylamine and subsequent redox reaction with iron(III)-ferrozine complex. Talanta, 84, 1205-1208. DOI: 10.1016/j.talanta.2010.12.019.10.1016/j.talanta.2010.12.019Suche in Google Scholar PubMed

Thompson, M., Ellison, S. L. R., & Wood, R. (2002). Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC technical report). Pure and Applied Chemistry, 74, 835-855. DOI: 10.1351/pac200274050835.10.1351/pac200274050835Suche in Google Scholar

Zhang, Z. Q., Yan, H. T., & Yue, X. F. (2004). Catalytic determination of trace formaldehyde with a flow injection system using the indicator reaction between crystal violet and bromated. Microchimica Acta, 146, 259-263. DOI: 10.1007/s00604-003-0178-y. 10.1007/s00604-003-0178-ySuche in Google Scholar

Received: 2014-9-23
Revised: 2014-11-24
Accepted: 2014-11-24
Published Online: 2015-3-19
Published in Print: 2015-6-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0084/pdf
Button zum nach oben scrollen