Abstract
Micro and nanocomposites of hydroxyl terminated polybutadiene (HTPB)-based polyurethanes (NPU) were obtained using five mineral fillers and Cloisite 20A nanoclay, respectively. Samples were prepared by the reaction of HTPB polyol and toluene diisocyanate (TDI), and the chain was further extended with glyceryl monoricinoleate to produce the final elastomeric polyurethanes. Mechanical and thermal properties were studied, showing that mineral fillers (20%w/w) significantly increased tensile strength, in particular nanoclay (at 5% w/w). When nanoclay-polymer dispersion was modified with a silane and hydantoin-bond promoter, elongation at break was significantly increased with respect to NPU with C20A. Thermal properties measured by differential scanning calorimetry (DSC) were not significantly affected in any case. The molecular structure of prepared micro and nanocomposites was confirmed by Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. Interaction of fillers with polymer chains is discussed, considering the role of silanes in compatibilization of hydrophilic mineral fillers and hydrophobic polymer. The functionalization of nanoclay with HMDS silane was confirmed using FTIR. Microstructure of NPU with C20A nanoclay was confirmed by Atomic Force Microscopy (AFM).
1 Introduction
Polyurethane compositions are utilized as liners to bond to composite propellants, and are mainly based on hydroxyl-terminated polybutadiene (HTPB). Liner properties can be tailored to a certain extent with the selection of appropriate fillers, and several compositions are utilized for these purposes. HTPB-based rubbers, filled with carbon black and antimonium oxide were used as liners for composite propellants. Carbon black acted as the reinforcing filler while Sb2O3 gave fire retardancy as well as reinforcement [1]. Wingborg and Sandén [2] used carbon black and aerosol as fillers in HTPB-polyurethane liners, while studying adhesion. Benli and coworkers [3] investigated the effect of different mineral fillers in HTPB-based liners cured with IPDI and chain extended with triethylamine. They utilized two different types of carbon black; and also silica, aluminum oxide, and zirconium(III) oxide as fillers. They concluded that these fillers do not considerably change the thermal degradation temperatures up to a load of 16% (w/w). Kakade and coworkers [4] have studied the effect of a variety of fillers for HTPB rubber liners. They found that using carbon black as the principal filler with a combination of silica and antimony trioxide as a fire retardant, gave adequate properties.
Besides conventional mineral fillers, nanofillers are additives that are conveniently incorporated into the polymer matrix to obtain polymeric nanocomposites. These nanofillers have at least one of its dimensions in the nanometer range. The mixing of clay with polymer matrices to form nanocomposites appears to have begun in late 1940s, with a resurge in early 1990s [5]. Recent literature has reported improvements on several properties of organically modified layered silicates (OMLS) polymer nanocomposites [6–12]. The presence of organoclay produces a deeper interaction filler/matrix at the interface compared with conventional fillers [13]. The type of nanofillers, state and degree of dispersion can be manipulated in order to obtain an array of properties so far not achievable from polyurethanes filled with micrometer size inorganic filler particles [14]. For example, it was reported that only 10 phr (parts per hundred of rubber) of organoclay are enough to obtain a similar mechanical behaviour as the compound with 40 phr of carbon black [13]. Polymer nanostructured materials with nanoclays were demonstrated to play a key role in reducing the flammability on coating systems in solid rocket exhaust plumes [15, 16]. A small amount of nanofiller up to 5% is generally sufficient to improve mechanical properties of polyurethanes [6, 17–21] and also thermal resistance properties [22].
In spite of the improved affinity of nanoclays for polymers compared to unmodified clay, compatibilization of nanoclay with silanes is made to further improve this affinity. Hexamethyl disilazane (HMDS) is a silane capable to introduce trimethylsilyl group in molecules having an active H atom, such as nanoclay. To increase affinity of mineral fillers to hydrophobic elastomers, bonding agents are added. Among bonding agents for rubbers there is a variety of additives, including Carbon Black and hydantoins [24].
In order to verify the incorporation of silane into nanoclay, we have chosen infrared spectroscopy as an analytical tool. Infrared spectroscopy was reported as a good method to mark the absorption bands of silanes, to verify if a reaction between the filler and silane occurred [25]. In this contribution we report the effect of five mineral fillers on the properties of HTPB-based microcomposites and three nanocomposites with nanoclay on their thermal and mechanical properties. FTIR and Raman spectroscopy is utilized to confirm incorporation of fillers to the polyurethane backbone, while AFM technique is applied to verify that a nanocomposite with nanoclay is obtained. The effect of silanization of hydrophilic nanoclay filler with HMDS is presented, together with the effect of a hydantoin-bonding agent on NPU properties.
2 Experimental Procedure
Materials: Hydroxyl-terminated polybutadiene, HTPB (hydroxyl index 0,051 eq./100 g, Mw 3000 g/mol) was from was purchased from Zibo Qilon Chemical Industry Ltd., China. A 70:30 mixture of 2,4 and 2,6 isomers of toluene diisocyanate (TDI) was utilized as received from Petroquímica Río Tercero S.A. (PRIII), Córdoba, Argentina. Dibutyl tin laureate (DBTL) was purchased from Sigma Aldrich Argentina. Chain extender glycerol monoricinoleate (MRG) was a commercial product (99% purity) from local suppliers (Quimex Sudamericana). Titanium dioxide was of 99% commercial grade material, grinded up to a particle size in the range of 10-15 µm and used at 20% (w/w). The other fillers were also utilized at 20% (w/w) and were standard analytical laboratory reagents, except from Lithopone and Carbon Black (“Negro de Humo”) that were commercial samples (Quimex Sudamericana S.A.). Carbon Black mean particle size was 1,5 µm. Lithopone (a mixture of barium sulfate and zinc sulfide) had an uneven particle size as seen by Scanning Electron Microscopy, from 2 to 4 µm. Calcium carbonate (aragonite-tupe crystals) and zinc oxide were 99.5% purity from Merck Co., U.S. Mean particle sizes were 1.5 and 0.4 µm, respectively. Cloisite 20A (dimethyl-dihydrogenated tallow quaternary ammonium montmorillonite) was a commercial nanoclay purchased from Southern Clay Products, U.S. used at a concentration of 5%. Bonding promoter Dantocol DHE (N, N-di(2-hydroxyethyl)-5, 5-dimethyl hydantoin) was 99% purity and obtained from Glyco Inc., Greenwich, U.S. Hexamethyl disilazane (HMDS) was 99% purity and obtained from Sigma Aldrich U.S.
2.1 Synthesis of polyurethane micro and nanocomposites
HTPB (69.4 g) was deaerted under vacuum at 60-70 °C, for two hours. The chain extender glycerol monoricinoleate (MRG, 4.25 g), was added in one step together with the corresponding mineral filler (20% w/w) and stirred at 250 rpm in a 500 ml glass reaction kettle under vacuum (5 mm Hg) for about 1 hour at room temperature (20 °C). When nanoclay composites (NPU) were prepared, dispersion was carried out by mixing at 2000 rpm for 15 minutes with a high speed laboratory mixer (IKA brand) using a 5 cm diameter round-bottom blade. After this period, this mixture was allowed to react with the corresponding modifier (HMDS silane or Dantocol DHE hydantoin) mixing for a further hour at 250 rpm. Afterwards a calculated quantity of the toluene diisocyanate (TDI), 6.2 g (which corresponded to a NCO/OH ratio of 1) together with DBTL catalyst (0.05%) were added. Mixing continued for a further 10 minutes at 250 rpm under vacuum at room temperature, after which themixture was poured into preheated metal moulds. The curing was allowed to proceed at 70 °C for 24 hours. Samples were used for testing only after at least one week of further curing at room temperature. PU with the following components: HTPB/TDI/MRG/TiO2 was used as reference sample for purposes of comparison and analysis, this is the composition used for a standard liner. Differential scanning calorimetry (DSC) studies were performed in a TA model Q20 apparatus. Samples were heated at 5 °C/min under a nitrogen atmosphere.
Fourier transform infrared (FT-IR) spectroscopy studies were performed using a Nicolet 520 spectrometer with a KBr window, with a resolution of 4 cm-1, number of scans 64, between a wavelength interval from 600 and 4000 cm-1. A Spectra Tech ATR (attenuated total reflectance) attachment with a horizontal ZnSe crystal was used. The collected spectra were analyzed by means of Omnic 3.0 software.
Tensile strength at break and elongation at maximum load were obtained utilizing a MTS DS/2 universal testing machine utilizing dumbbell-shaped probes, at a velocity of 50 mm/sec according to ASTM D-638.
Raman spectroscopic studies were performed with a Renishaw apparatus model Invia, with a 785 nm laser of 300 mW, 50X augmentation within 100 to 3200 cm−1.
Atomic force microscopy (AFM) was performed with a Bruker UltraObjective apparatus using a silicon point of 10 nm radius and with a force from 21 to 100 N/m under the tapping mode (National Institute for Industrial Technology, INTI, Buenos Aires).
Mineral filler mean particle size was obtained from scanning electron microscopy (SEM) utilizing a Focused Ion Beam (FEI) NanoLab 650 Dual Beam microscope (Micro and Nanotechnology Center, INTI, Buenos Aires).
3 Results
In Figure 1 we observed that the spectra of PU with mineral fillers were quite similar, reflecting the absorption bands of polyurethanes (Figure 1). The absence of -NCO absorption band around 2266 cm−1 indicates complete consumption of diisocyanate in formation of the urethane network. Bands were assigned as follows: absorption at around 3300 cm−1 corresponded to N-H, while C-H bands were found in the region between 2800 and 2900 cm−1. Other main bands were at 1735 cm−1 (C=O stretching of urethane group), 1600 cm−1 (NH deformations) and 1450 cm−1 (CH2 and CH bending) [26, 27].

FT-IR spectra for five HTPB-based polyurethane microcomposites with different mineral fillers at 20% (w/w).
Spectra for Cloisite 20A nanoclay and NPU are presented in Figure 2. All NPU had a peak at 1260-1265 cm−1. As this peak was not seen in C20A additive alone, it was concluded that the band corresponded to the interaction of C20A with forming polyurethane. As it was of very low intensity in HMDS-treated C20A NPU (sample c) it is possible that silane reaction with OH groups in nanoclay impeded reaction of these groups with isocyanate when forming polyurethane.

FT-IR spectra for three HTPB-based nanocomposites (NPU). Top to bottom: nanoclay C20A (a), NPU with C20A nanoclay (b), NPU with C20A plus hexamethylene disilazane (HMDS) (c) and NPU with C20A plus Dantocol DHE (d).
NPU with C20A (sample b) showed sharp and intense bands at 1105, 1264, 1449 and 2929 cm−1. Main bands for C20A were found at 916, 1046, 1468, 2851 and 2924 cm−1, accordingly with previous reports [28]. C20A band at 1050 cm−1 corresponded to the stretching vibration of Si-O-Si [29]. In sample (c) the peak located at 1060 cm−1 was particularly broad. This very strong band was assigned to the Si-O-Si stretch in silane modified clays, indicating surface modification of nanoclay by incorporation of HMDS silane. Band at 3641 cm−1 was assigned to Si-OH hydroxyl stretching in clays modified using silanes [30]. In silanized clays an increase in the Si-O peak at a frequency around 1050 cm−1 is observed [31, 32]; which we observed at 1060 cm−1. This suggested that HMDS was chemically incorporated to nanoclay structure. Nanocomposite with C20A plus bond promoter Dantocol DHE (sample d) showed a distinctive peak at 1097 cm−1 also seen in C20A nanoclay but with low intensity. In all three NPU samples the peaks close to 2850 and 2920 cm−1 were due to the -CH asymmetric and symmetric stretching of -CH2 groups from chemical structure of surfactant in C20 nanoclay [30].
Raman spectra of microcomposites with mineral fillers under consideration are shown in Figure 3.

Raman spectra of microcomposites of elastomeric PU with different mineral fillers and neat PU.
Characteristic bands for TiO2 (anathase phase) were found at 396, 515 and 638 cm−1. Sample with CaCO3 displayed typical filler absorption bands at 1086 and 1430 cm−1. Lithopone sample showed sulphate band at 988 cm−1 and sulphur band at 350 cm−1. Typical absorption bands for cis-1,4; trans-1,4 and 1-2-vinyl in HTPB were confirmed between 1620 and 1680 cm−1. Carbonyl peaks of all PU microcomposites were found around 1700 cm−1, while free carbonyl is found at 1735 cm−1. This indicated that mineral fillers were bonded to C=O, as wave number was shifted to lower values [26, 33].
The following Figure 4 shows Raman spectra of nanocomposites prepared. In general it was found that the positions of peaks from distinctive functional groups were nearly identical in both pristine polyurethane and the PU/organoclay nanocomposite, which means that the segmented structure of polyurethane was not affected by the presence of organoclay [34].

Raman spectra of nanocomposites (NPU) of elastomeric PU with nanoclay and modified nanoclay. PU: neat sample without nanoclay; NPU with C20A 5%; NPU with C20A + HMDS and NPU with C20A+Dantocol DHE.
In general spectra of nanocomposites were similar to that of neat PU without any treatment. NPU with C20A has similar bands to those characteristic of montmorillonite-based C20A: at 550 cm−1 and 450 cm−1, corresponding to the stretching vibration of Al-O, and the bending vibration of Si-O, respectively [35]. Bands at 1610 cm−1 corresponded to aromatic isocyanate, 1440 cm−1 to N=C=O scattering (symmetric stretch), while also urethane (amide functional group at ca. 1303 cm−1) were identified [36]. In silanized nanoclay the main sample bands seen with FTIR were confirmed but somewhat displaced. This could be due to the fact that molecules with different elements of symmetry, certain bands may be active in IR, Raman, both or neither. Dantocol DHE absorption bands are clearly seen as narrow peaks. NPU with bonding agent Dantocol DHE showed additional peaks corresponding to this bonding agent.
Strain-stress properties of PU and NPU samples are shown in Table 1. It was observed that microcomposites increased tensile strength from 55 (Lithopone) to 260% (Carbon Black) respect to sample with TiO2, which was used as reference for properties comparison and analysis.
Mechanical properties of microcomposites (PU) with different inorganic mineral fillers [20% (w/w)] and nanocomposites (NPU) with Cloisite 20A nanoclay [5% (w/w)].
Sample | Young Modulus (MPa) | Elongation at break (%) |
---|---|---|
TiO2 | 1,08 | 1000 |
ZnO | 1,81 | 240 |
BaSO4-ZnS (Lithopone) | 1,68 | 250 |
CaCO3 | 2,17 | 260 |
Carbon Black | 2,82 | 200 |
PU nanocomposites | ||
Cloisite 20A | 3,3 | 280 |
Silanized Cloisite 20A | 0,5 | 1200 |
Cloisite 20A+Dantocol DHE | 1,27 | 370 |
A three-fold increase in tensile strength was found with nanocomposites with Cloisite 20A nanoclay (5% w/w). Nanoclay creates crosslinking of polymer matrix by strong interfacial interaction with the polymer chain and limiting the mobility of surrounding chains, thus increasing modulus [37, 38]. However, silanization with HMDS did not improve mechanical resistance, although it a significant increase in elasticity (elongation a break) respect to both micro and nanocomposites was seen. The NPU obtained could be a useful material for special applications demanding very high elasticity.
In general, it is expected that fillers act as nucleating agents for polymers, inducing the formation of crystallites. Among the mineral fillers tested, all increased tensile strength respect to unfilled PU (0,5 MPa, not in Table) and to TiO2-filled microcomposite. It was observed that Carbon Black increased significantly modulus, almost augmenting three-fold tensile strength. Addition of Carbon Black to HTPB-TDI system provided a ten-fold increase in tensile strength and a three-fold increase in elongation while generally improving other properties [39]. However, we consider not convenient its utilization as liner for composite propellants because of excessive generation of combustion gases and pyrolysis products when exposed to high temperatures. In general, properties of elastomeric filled materials mainly depend on the dispersion condition of filler particles and their principal relevant properties: particle size, surface area, aggregate structure, surface activity, and rubber-filler interactions [40].
The following figure depicts the thermograms of microcomposites with mineral fillers under study:
Carbon black microcomposite higher temperature peak was split in two exotherms. In a PU system based on HTPB-IPDI filled with Carbon Black, main exotherms were also found at 370 °C and 500 °C [3]. Sample with calcium carbonate decomposed completely 6.4 °C higher than sample with titanium dioxide. This could be due to the aragonite-type structure of calcium carbonate which shielded hard segments better than TiO2 from high temperatures. Thermal properties for the three PU nanocomposites (NPU) prepared with 5% C20A nanoclay, silanized 5% C20A with 5% hexamethylene disilazane (HMDS) and 5% C20A plus bond promoter Dantocol DHE at 5% were not different from microcomposites with mineral fillers (exotherms were found at 375 and 500 °C for these three samples). This indicated that silanization and addition of bonding agent did not affect thermal properties of NPU with C20A nanoclay, and that the main improvement of nanoclay in thermal properties is due to their barrier properties.

Thermal properties of polyurethane microcomposites with different mineral fillers studied. Curves (from top to bottom): CaCO3, Lithopone, ZnO, TiO2 and Carbon black.
Microstructure morphology of a nanocomposite sample was studied by atomic force microscopy (AFM). The stronger penetration of the AFM tip in the softer region relative to the harder urethane region allowed visualization of different phase-components. In the following figure, the left hand side image corresponded to the PU liner without nanoclay. The hard and soft domains were clearly seen, indicating segregation of these structures. The high modulus hard domains and the low modulus soft blocks appeared as light and dark regions, respectively [41]. White clear dots (left hand-side) were impurities after film sample preparation by spin coating.
Right hand-side image corresponded to C20A-NPU. Nanoclay could be seen as dark coloured aggregates. The AFM micrograph showed that the clay agglomerates were broken into smaller tactoids, which are then intercalated/ exfoliated in HTPB [42, 43].
4 Conclusions
We have shown that NPU with C20A nanoclay improved the mechanical properties significantly, when compared to microcomposites with conventional mineral fillers. This improvement in mechanical properties is well-known and thoroughly reported in the bibliography. Surface modification of nanoclay-HTPB by incorporation of HMDS silane was shown by FTIR. Elongation at break was increased by four-fold with respect to NPU with C20A, and was almost the same as with TiO2-filled microcomposite. With respect to the thermal properties, neither nanoclay silanization nor addition of hydantoin-bonding agent produced any effect on thermal properties of NPU compared to NPU with C20A, as main improvement is due to platelet barrier effect of nanoclay. The materials obtained with silanized C20A were very soft compared to NPU with C20A, probably because of the increased compatibilization of nanoclay with hydrophobic HTPB segment. Silanization impeded the segregation of hard and soft domains, then rendering the nanocomposite very soft in comparison with C20A nanocomposite. These materials are potentially useful for high elasticity applications. Dantocol DHE-NPU did not show any particular advantage with respect to thermal and mechanical properties compared to the microcomposites studied. Morphology of nanocomposite with C20A was analyzed by AFM, evidencing PU hard and soft domains and nanoclay incorporation. However, it has to be kept in mind that properties of nanocomposites depend on several factors acting simultaneously. Anticipated behavior due to the combined effect of particle size, surface area, aggregate structure and polymer-filler interactions detailed behavior needs to be further investigated.

Atomic Force Microscopy of polyurethane liner without C20A nanoclay (left)and with C20A nanoclay (right).
Acknowledgements
To Javier A. Bocchio and Fabrizio Molinari for performing DSC studies. We are also grateful to Pablo Granell from Micro and Nanotechnology Center, INTI, Buenos Aires for particle size analysis by SEM and Paulina Lloret/Lionel Veiga for AFM studies.
References
[1] Navale S., Sriraman S., Wani V., Manohar M. and Kakade S. Effect of Additives on Liner Properties of Case-bonded Composite Propellants, Defence Science Journal, 2004, 54, 3, 353-35910.14429/dsj.54.2049Search in Google Scholar
[2] Sandén R. and Wingborg N. Bonding a HTPB Liner to Modem Rocket Case Materials, Journal of Applied Polymer Science, 1989, 37, 167-17110.1002/app.1989.070370112Search in Google Scholar
[3] Benli S., Yilmazer U., Pekel F. and Özkar S. Effect of Fillers on Thermal and Mechanical Properties of Polyurethane Elastomer, Journal of Applied Polymer Science, 1998, 68, 1057–106510.1002/(SICI)1097-4628(19980516)68:7<1057::AID-APP3>3.0.CO;2-ESearch in Google Scholar
[4] Kakade S., Navale S., Kadarn U. and Gupta M. Effect of Fillers and Fire Retardant Compounds on Hydroxy-Terminated Polybutadiene-Based Insulators, Defence Science Journal, 2001, 51.2.133-13910.14429/dsj.51.2213Search in Google Scholar
[5] Sinha Ray S. Clay-Containing Polymer Nanocomposites: From Fundamentals to Real Applications, Elsevier, Amsterdam, The Netherlands, 2013Search in Google Scholar
[6] Alexander M. and Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Materials Science and Engineering, 2000, 28, 1-6310.1016/S0927-796X(00)00012-7Search in Google Scholar
[7] Hussain F., Hojjati M., Okamoto M. and Gorga R. Review article: Polymer-matrixSearch in Google Scholar
[8] Nanocomposites, Processing, Manufacturing, and Application: An Overview, Journal of Composite Materials, 2006, 40, 17, 1512-1559Search in Google Scholar
[9] Paul D. and Robeson L. Polymer nanotechnology: Nanocomposites, Polymer, 2008, 49, 3187-320410.1016/j.polymer.2008.04.017Search in Google Scholar
[10] Kurahatti, R., Surendranathan A., Kori S., Nirbhay S., Kumar A., Ramesh A. et al.. Defence Applications of Polymer Nanocomposites, Defence Science, 2010, 60, 5, 551-56310.14429/dsj.60.578Search in Google Scholar
[11] Vega-Baudrit J., Sibaja-Ballestero M., Martín Martínez J. and Porras M. Perspectives and use of nanostructured materials for improving polymeric reinforced materials, Rev. Iberoam. Polím., 2010, 11, 7, 574-592Search in Google Scholar
[12] Albdiri M., Yousif B., Ku H. and Lau K. A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites, Journal of Composite Materials, 2012, 47, 9, 1093–111510.1177/0021998312445592Search in Google Scholar
[13] Kotal M. and Bhowmick A. Polymer nanocomposites from modified clays: Recent advances and challenges, Progress in Polymer Science, 2015, 51, 127-18710.1016/j.progpolymsci.2015.10.001Search in Google Scholar
[14] Bitinis N., Hernandez M., Verdejo R., Kenny J. and Lopez-Manchado M. Recent Advances in Clay/Polymer Nanocomposites, Advanced Materials, 2011, 23, 5229–523610.1002/adma.201101948Search in Google Scholar
[15] Pattanayak A. and Jana S. Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods Polymer, 2005, 46, 3275–328810.1016/j.polymer.2005.02.081Search in Google Scholar
[16] Koo, J. and Pilato, L. Polymer nanostructured materials for high temperature applications, SAMPE Journal, 2005, 41(2), 7-19Search in Google Scholar
[17] Athar J. Nanocomposites for defense applications, Russia-India Interactive Seminar, Pune, India, 2014, 3-4Search in Google Scholar
[18] Song, M., Hourston D., Yao K., Tay J.K. and Ansarifar M.. High Performance Nanocomposites of Polyurethane Elastomer and Organically Modified Layered Silicate, Journal of Applied Polymer Science, 2003, 90, 3239-324310.1002/app.12979Search in Google Scholar
[19] Wang Z. and Pinnavaia T. Nanolayer Reinforcement of Elastomeric Polyurethane, Chem. Mater., 1998, 10, 3769-377110.1021/cm980448nSearch in Google Scholar
[20] Maji P., Prasanta K. Guchhait P. and Bhowmick A. Effect of nanoclays on physico-mechanical properties and adhesion of polyester-based polyurethane nanocomposites: structure–property correlations, Journal of Materials Science, 2009, 44, 21, 5861-587110.1007/s10853-009-3827-7Search in Google Scholar
[21] Quagliano J. and Bocchio J. Effect of nanoclay loading on the thermal decomposition of nanoclay polyurethane elastomers obtained by bulk polymerization, IOP Conf. Series: Materials Science and Engineering, 2014, 64, 1, 01203510.1088/1757-899X/64/1/012035Search in Google Scholar
[22] Fiayyaz M., Khalid Mahmood Zia K., Zuber M., Jamil T., Kaleem Khosa M. and Asghar Jamal M. Synthesis and characterization of polyurethane/bentonite nanoclay based nanocomposites using toluene diisocyanate, Korean Journal of Chemical Engineering, 2014, 31, 4, 644–64910.1007/s11814-013-0288-0Search in Google Scholar
[23] Rehab A. and Salahuddin N. Nanocomposite Materials Based on Polyurethane Intercalated into Montmorillonite Clay, Materials Science and Engineering A, 2005, 399, 368-37610.1016/j.msea.2005.04.019Search in Google Scholar
[24] Geyer B., Rohner S., Lorenz G. and Kandelbauer A. Improved Thermostability and Interfacial Matching of Nanoclay Filler and Ethylene Vinyl Alcohol Matrix by Silane-Modification, J. Appl. Polym. Sci., 132, 4122710.1002/app.41227Search in Google Scholar
[25] Williams C., Walker S., Lochert I. and Clark S. Investigation into the interaction of dantocol in polymer bonded explosives and bonding agent development Abstracts of the New Trends in Research of Energetic Materials (Pardubice, Czech Republic, 10–12 April, 2013), Czech Republic, 2013, 1:399-406Search in Google Scholar
[26] Fernández C. Customised nanocomposites based on rubber matrices for high-demand applications, (NANORUB)-Periodic Activity Report (18-24M) COOP-CT-2005-018003, 2005Search in Google Scholar
[27] Brunette C., Hsu S. and MacKnight W. Hydrogen-Bonding Properties of Hard-Segment Model Compounds in Polyurethane Block Copolymers, Macromolecules, 1982, 15, 71-7710.1021/ma00229a014Search in Google Scholar
[28] Rehman F. Synthesis and Characterization of Speciality Polyurethane Elastomers, Thesis, Department of Chemistry & Biochemistry, University of Agriculture, Faisalabad, Pakistan, 2010Search in Google Scholar
[29] Mansoori Y., Hemmati S., Eghbali P., Reza Zamanloo M. and Imanzadeh G. Nanocomposite materials based on isosorbide methacrylate/Cloisite 20A, Polym Int., 2013, 62, 2, 280-28810.1002/pi.4297Search in Google Scholar
[30] Dimitry I., Abdeen Z., Ismail E. and Saad A. Studies of Particle Dispersion in Elastomeric Polyurethane/Organically Modified Montmorillonite Nanocomposites International Journal of Green Nanotechnology, 2011, 3:197-21210.1080/19430892.2011.628585Search in Google Scholar
[31] Sharma B., Chhibber R. and Mehta R. (2016) Effect of surface treatment of nanoclay on the mechanical properties of epoxy/ glass fiber/clay nanocomposites, Composite Interfaces, 10.1080/09276440.2016.1165522Search in Google Scholar
[32] Toro M., Villagra Di Carlo B., Erdmann E. and Destéfanis H. Characterization of modified clay with silanes. Influence on barrier and surface properties of polycarbonate membranes. VIII Argentine Congress of Chemical Engineering, Argentine Association of Chemical Engineers (AAIQ), Buenos Aires, Argentina, 2015Search in Google Scholar
[33] Salazar Serge N., Feijoo J., Suárez N., Hernández M. and Lo Mónaco S. Synthesis of polymeric nanocomposites from organically modified clays, Revista Iberoamericana de Polímeros 2008, 9 (3), 243-249Search in Google Scholar
[34] Ahmad N., Khan M., Ma X. and Ul-Haq N. The Influence of Cross-Linking/Chain Extension Structures on Mechanical Properties of HTPB-Based Polyurethane Elastomers, Arab J Sci Eng., 2014, 39:43–5110.1007/s13369-013-0874-9Search in Google Scholar
[35] Chen T., Tien Y. and Wie K. Synthesis and characterization of novel segmented polyurethane/clay nanocomposite via poly(epsilon-caprolactone clay, Journal of Polymer Science Part A-Polymer Chemistry, 1999, 37, 13, 2225-223310.1002/(SICI)1099-0518(19990701)37:13<2225::AID-POLA37>3.0.CO;2-ZSearch in Google Scholar
[36] Chen T., Tien Y., and Wei K,. Synthesis and characterization of novel segmented polyurethane/clay nanocomposites, Polymer, 2000, 41, 1345-135310.1016/S0032-3861(99)00280-3Search in Google Scholar
[37] Parnell S. and Cakmak M. Kinetic studies of polyurethane polymerization with Raman spectroscopy, Polymer 44, 2003, 5137–514410.1016/S0032-3861(03)00468-3Search in Google Scholar
[38] Feldman D. Elastomer Nanocomposite properties, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2012, 49, 784–79310.1080/10601325.2012.703537Search in Google Scholar
[39] Qiao Y. and Pochan J. Mechanics of Polymer-Clay Nanocomposites, Macromolecules, 2007, 40, 2, 290-2910.1021/ma061445wSearch in Google Scholar
[40] Ryan P. Urethane Elastomers Based on Hydroxyl Terminated Polybutadienes, Journal of Elastomers and Plastics, 1971, 3: 57-7110.1177/009524437100300104Search in Google Scholar
[41] Samaržija-Jovanović S., Jovanović V., Marković G., Zeković I. and Marinović-Cincović M. Properties of Vulcanized Polyisoprene Rubber Composites Filled with Opalized White Tuff and Precipitated Silica, The Scientific World Journal, 2014, ID 913197, 9 pages10.1155/2014/913197Search in Google Scholar
[42] Prisacariu C. Polyurethane Elastomers. From Morphology to Mechanical Aspects, Springer-Verlag/Wien, Austria, 201110.1007/978-3-7091-0514-6Search in Google Scholar
[43] Rath S., Sudarshan K., Bhavsar R., Kharul U., Pujari K., Patri M. and Khakhard D. Characterizing the nanoclay induced constrained amorphous region in model segmented polyurethane–urea/clay nanocomposites and its implications on gas barrier properties, Phys. Chem. Chem. Phys. 2015, 10.1039/c5cp05260bSearch in Google Scholar PubMed
[44] Bastos de Souza F. and Scuracchio C. The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers, Polímeros, 2014, 24, 6. 10.1590/0104-1428.1648Search in Google Scholar
© 2017 Pablo Ross et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Articles in the same Issue
- Regular Articles
- Rare Coumarins Induce Apoptosis, G1 Cell Block and Reduce RNA Content in HL60 Cells
- Regular Articles
- Evaluation of the photocatalytic ability of a sol-gel-derived MgO-ZrO2 oxide material
- Regular Articles
- Extraction Methods for the Isolation of Isoflavonoids from Plant Material
- Regular Articles
- Micro and nanocomposites of polybutadienebased polyurethane liners with mineral fillers and nanoclay: thermal and mechanical properties
- Regular Articles
- Effect of pH on Structural, Magnetic and FMR Properties of Hydrothermally Prepared Nano Ni Ferrite
- Regular Articles
- Statistical approach to study of lithium magnesium metaborate glasses
- Regular Articles
- The effectiveness of biodrying waste treatment in full scale reactor
- Regular Articles
- Chemical comparison of the underground parts of Valeriana officinalis and Valeriana turkestanica from Poland and Kazakhstan
- Regular Articles
- Phytochemical Characterization and Biological Evaluation of the Aqueous and Supercritical Fluid Extracts from Salvia sclareoides Brot
- Regular Articles
- Recent Microextraction Techniques for Determination and Chemical Speciation of Selenium
- Regular Articles
- Compost leachate treatment using polyaluminium chloride and nanofiltration
- Regular Articles
- Facile and Effective Synthesis of Praseodymium Tungstate Nanoparticles through an Optimized Procedure and Investigation of Photocatalytic Activity
- Regular Articles
- Computational Study on Non-linear Optical and Absorption Properties of Benzothiazole based Dyes: Tunable Electron-Withdrawing Strength and Reverse Polarity
- Regular Articles
- Comparative sorption studies of chromate by nano-and-micro sized Fe2O3 particles
- Regular Articles
- Recycling Monoethylene Glycol (MEG) from the Recirculating Waste of an Ethylene Oxide Unit
- Regular Articles
- Antimicrobial activity and thiosulfinates profile of a formulation based on Allium cepa L. extract
- Regular Articles
- The effect of catalyst precursors and conditions of preparing Pt and Pd-Pt catalysts on their activity in the oxidation of hexane
- Regular Articles
- Platinum and vanadate Bioactive Complexes of Glycoside Naringin and Phenolates
- Regular Articles
- Antimicrobial sesquiterpenoids from Laurencia obtusa Lamouroux
- Regular Articles
- Comprehensive spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR) identification and computational studies on 1-acetyl-1H-indole-2,3-dione
- Regular Articles
- A combined experimental and theoretical study on vibrational and electronic properties of (5-methoxy-1H-indol-1-yl)(5-methoxy-1H-indol-2-yl)methanone
- Regular Articles
- Erratum to: Analysis of oligonucleotides by liquid chromatography with alkylamide stationary phase
- Regular Articles
- Non-isothermal Crystallization, Thermal Stability, and Mechanical Performance of Poly(L-lactic acid)/Barium Phenylphosphonate Systems
- Regular Articles
- Vortex assisted-supramolecular solvent based microextraction coupled with spectrophotometric determination of triclosan in environmental water samples
- Regular Articles
- Investigation on Two Compounds of O,O’-dithiophosphate Derivatives as Corrosion Inhibitors for Q235 Steel in Hydrochloric Acid Solution
- Regular Articles
- Evaluation of temporary seasonal variation of heavy metals and their potential ecological risk in Nzhelele River, South Africa
- Regular Articles
- Synthesis, characterization, second and third order non-linear optical properties and luminescence properties of 1,10-phenanthroline-2,9-di(carboxaldehyde phenylhydrazone) and its transition metal complexes
- Regular Articles
- Spectrodensitometric simultaneous determination of esomeprazole and domperidone in human plasma
- Regular Articles
- Computer-aided drug design of capuramycin analogues as anti-tuberculosis antibiotics by 3D-QSAR and molecular docking
- Regular Articles
- Synthesis, characterization, thermal degradation and urease inhibitory studies of the new hydrazide based Schiff base ligand 2-(2-hydroxyphenyl)-3-{[(E)-(2-hydroxyphenyl)methylidene]amino}-2,3-dihydroquinazolin-4(1H)-one
- Regular Articles
- Quaternary salts derived from 3-substituted quinuclidine as potential antioxidative and antimicrobial agents
- Regular Articles
- Bio-concentration of Polycyclic Aromatic Hydrocarbons in the grey Mangrove (Avicennia marina) along eastern coast of the Red Sea
- Regular Articles
- Quantitative Investigation of Roasting-magnetic Separation for Hematite Oolitic-ores: Mechanisms and Industrial Application
- Regular Articles
- Photobleaching characteristics of α-(8-quinolinoxy) zinc phthalocyanine, a new type of amphipathic complex
- Regular Articles
- Methane dry reforming over Ni catalysts supported on Ce–Zr oxides prepared by a route involving supercritical fluids
- Regular Articles
- Thermodynamic Compatibility, Crystallizability, Thermal, Mechanical Properties and Oil Resistance Characteristics of Nanostructure Poly (ethylene-co-methyl acrylate)/Poly(acrylonitrile-co-butadiene) Blends
- Regular Articles
- The crystal structure of compositionally homogeneous mixed ceria-zirconia oxides by high resolution X-ray and neutron diffraction methods
- Topical Issue on Agriculture
- Properties of the filtrate from treatment of pig manure by filtration method
- Topical Issue on Agriculture
- Monitoring content of cadmium, calcium, copper, iron, lead, magnesium and manganese in tea leaves by electrothermal and flame atomizer atomic absorption spectrometry
- Topical Issue on Catalysis
- Application of screen-printed carbon electrode modified with lead in stripping analysis of Cd(II)
- Topical Issue on Research for Natural Bioactive Products
- Burdock (Arctium lappa) Leaf Extracts Increase the In Vitro Antimicrobial Efficacy of Common Antibiotics on Gram-positive and Gram-negative Bacteria
- Topical Issue on Research for Natural Bioactive Products
- A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus
- Topical Issue on Research for Natural Bioactive Products
- ‘Capiture’ plants with interesting biological activities: a case to go
- Topical Issue on Research for Natural Bioactive Products
- Volatile terpenoids as potential drug leads in Alzheimer’s disease
- Topical Issue on Research for Natural Bioactive Products
- Essential Oils as Immunomodulators: Some Examples
- Topical Issue on Research for Natural Bioactive Products
- Phenolic profiling and therapeutic potential of local flora of Azad Kashmir; In vitro enzyme inhibition and antioxidant
- Topical Issue on Research for Natural Bioactive Products
- Chemical profile, antioxidant activity and cytotoxic effect of extract from leaves of Erythrochiton brasiliensis Nees & Mart. from different regions of Europe
Articles in the same Issue
- Regular Articles
- Rare Coumarins Induce Apoptosis, G1 Cell Block and Reduce RNA Content in HL60 Cells
- Regular Articles
- Evaluation of the photocatalytic ability of a sol-gel-derived MgO-ZrO2 oxide material
- Regular Articles
- Extraction Methods for the Isolation of Isoflavonoids from Plant Material
- Regular Articles
- Micro and nanocomposites of polybutadienebased polyurethane liners with mineral fillers and nanoclay: thermal and mechanical properties
- Regular Articles
- Effect of pH on Structural, Magnetic and FMR Properties of Hydrothermally Prepared Nano Ni Ferrite
- Regular Articles
- Statistical approach to study of lithium magnesium metaborate glasses
- Regular Articles
- The effectiveness of biodrying waste treatment in full scale reactor
- Regular Articles
- Chemical comparison of the underground parts of Valeriana officinalis and Valeriana turkestanica from Poland and Kazakhstan
- Regular Articles
- Phytochemical Characterization and Biological Evaluation of the Aqueous and Supercritical Fluid Extracts from Salvia sclareoides Brot
- Regular Articles
- Recent Microextraction Techniques for Determination and Chemical Speciation of Selenium
- Regular Articles
- Compost leachate treatment using polyaluminium chloride and nanofiltration
- Regular Articles
- Facile and Effective Synthesis of Praseodymium Tungstate Nanoparticles through an Optimized Procedure and Investigation of Photocatalytic Activity
- Regular Articles
- Computational Study on Non-linear Optical and Absorption Properties of Benzothiazole based Dyes: Tunable Electron-Withdrawing Strength and Reverse Polarity
- Regular Articles
- Comparative sorption studies of chromate by nano-and-micro sized Fe2O3 particles
- Regular Articles
- Recycling Monoethylene Glycol (MEG) from the Recirculating Waste of an Ethylene Oxide Unit
- Regular Articles
- Antimicrobial activity and thiosulfinates profile of a formulation based on Allium cepa L. extract
- Regular Articles
- The effect of catalyst precursors and conditions of preparing Pt and Pd-Pt catalysts on their activity in the oxidation of hexane
- Regular Articles
- Platinum and vanadate Bioactive Complexes of Glycoside Naringin and Phenolates
- Regular Articles
- Antimicrobial sesquiterpenoids from Laurencia obtusa Lamouroux
- Regular Articles
- Comprehensive spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR) identification and computational studies on 1-acetyl-1H-indole-2,3-dione
- Regular Articles
- A combined experimental and theoretical study on vibrational and electronic properties of (5-methoxy-1H-indol-1-yl)(5-methoxy-1H-indol-2-yl)methanone
- Regular Articles
- Erratum to: Analysis of oligonucleotides by liquid chromatography with alkylamide stationary phase
- Regular Articles
- Non-isothermal Crystallization, Thermal Stability, and Mechanical Performance of Poly(L-lactic acid)/Barium Phenylphosphonate Systems
- Regular Articles
- Vortex assisted-supramolecular solvent based microextraction coupled with spectrophotometric determination of triclosan in environmental water samples
- Regular Articles
- Investigation on Two Compounds of O,O’-dithiophosphate Derivatives as Corrosion Inhibitors for Q235 Steel in Hydrochloric Acid Solution
- Regular Articles
- Evaluation of temporary seasonal variation of heavy metals and their potential ecological risk in Nzhelele River, South Africa
- Regular Articles
- Synthesis, characterization, second and third order non-linear optical properties and luminescence properties of 1,10-phenanthroline-2,9-di(carboxaldehyde phenylhydrazone) and its transition metal complexes
- Regular Articles
- Spectrodensitometric simultaneous determination of esomeprazole and domperidone in human plasma
- Regular Articles
- Computer-aided drug design of capuramycin analogues as anti-tuberculosis antibiotics by 3D-QSAR and molecular docking
- Regular Articles
- Synthesis, characterization, thermal degradation and urease inhibitory studies of the new hydrazide based Schiff base ligand 2-(2-hydroxyphenyl)-3-{[(E)-(2-hydroxyphenyl)methylidene]amino}-2,3-dihydroquinazolin-4(1H)-one
- Regular Articles
- Quaternary salts derived from 3-substituted quinuclidine as potential antioxidative and antimicrobial agents
- Regular Articles
- Bio-concentration of Polycyclic Aromatic Hydrocarbons in the grey Mangrove (Avicennia marina) along eastern coast of the Red Sea
- Regular Articles
- Quantitative Investigation of Roasting-magnetic Separation for Hematite Oolitic-ores: Mechanisms and Industrial Application
- Regular Articles
- Photobleaching characteristics of α-(8-quinolinoxy) zinc phthalocyanine, a new type of amphipathic complex
- Regular Articles
- Methane dry reforming over Ni catalysts supported on Ce–Zr oxides prepared by a route involving supercritical fluids
- Regular Articles
- Thermodynamic Compatibility, Crystallizability, Thermal, Mechanical Properties and Oil Resistance Characteristics of Nanostructure Poly (ethylene-co-methyl acrylate)/Poly(acrylonitrile-co-butadiene) Blends
- Regular Articles
- The crystal structure of compositionally homogeneous mixed ceria-zirconia oxides by high resolution X-ray and neutron diffraction methods
- Topical Issue on Agriculture
- Properties of the filtrate from treatment of pig manure by filtration method
- Topical Issue on Agriculture
- Monitoring content of cadmium, calcium, copper, iron, lead, magnesium and manganese in tea leaves by electrothermal and flame atomizer atomic absorption spectrometry
- Topical Issue on Catalysis
- Application of screen-printed carbon electrode modified with lead in stripping analysis of Cd(II)
- Topical Issue on Research for Natural Bioactive Products
- Burdock (Arctium lappa) Leaf Extracts Increase the In Vitro Antimicrobial Efficacy of Common Antibiotics on Gram-positive and Gram-negative Bacteria
- Topical Issue on Research for Natural Bioactive Products
- A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus
- Topical Issue on Research for Natural Bioactive Products
- ‘Capiture’ plants with interesting biological activities: a case to go
- Topical Issue on Research for Natural Bioactive Products
- Volatile terpenoids as potential drug leads in Alzheimer’s disease
- Topical Issue on Research for Natural Bioactive Products
- Essential Oils as Immunomodulators: Some Examples
- Topical Issue on Research for Natural Bioactive Products
- Phenolic profiling and therapeutic potential of local flora of Azad Kashmir; In vitro enzyme inhibition and antioxidant
- Topical Issue on Research for Natural Bioactive Products
- Chemical profile, antioxidant activity and cytotoxic effect of extract from leaves of Erythrochiton brasiliensis Nees & Mart. from different regions of Europe