Staminate flowers of the non-native seagrass, Halophila stipulacea, observed for the first time in Biscayne Bay, Florida, USA
-
Justin E. Campbell
, Allison Patranella
, Becca A. Hatchell, Bradley T. Furman
and Michael E. Wheeler
Abstract
Halophila stipulacea is a dioecious seagrass native to the Red Sea and the western Indian Ocean. It has rapidly expanded to the Mediterranean and Caribbean Seas. While sexual reproduction has been reported within its native range, observations of reproductive structures across its invasive ranges are limited, particularly within the Caribbean. We report instances of staminate flowers of H. stipulacea in a recently established population in the United States. Neither fruits nor pistillate flowers were detected. As this species can be fecund across its native range, additional information on its reproductive ecology is key to understanding its spread into novel regions.
Acknowledgments
This is contribution #2041 from the Institute of Environment at Florida International University.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
Allen, A. C., Mignucci-Giannoni, A. A., and Kiszka, J. J. (2024). Conservation challenges and emerging threats to the West Indian manatee (Trichechus manatus) in Florida and Puerto Rico. Lat. Am. J. Aquat. Mamm. 19: 32–41.Search in Google Scholar
Bricker, E., Calladine, A., Virnstein, R., and Waycott, M. (2018). Mega clonality in an aquatic plant: a potential survival strategy in a changing environment. Front. Plant Sci. 9: 435, https://doi.org/10.3389/fpls.2018.00435.Search in Google Scholar PubMed PubMed Central
Campbell, J. E., Allen, A.-C., Sattelberger, D. C., White, M. D., and Fourqurean, J. W. (2025). First record of the seagrass Halophila stipulacea (Forsskal) Ascherson in the waters of the continental United States (kKey Biscayne, Florida). Aquat. Bot. 196: 103820, https://doi.org/10.1016/j.aquabot.2024.103820.Search in Google Scholar
Cassell, J. S., Cruz-Rivera, E., Wyllie-Echeverria, S., and Jobsis, P. (2024). Variation in nutritional quality of an invasive seagrass does not explain its low palatability to two key herbivores in a Caribbean Bay. Aquat. Bot. 190: 103820, https://doi.org/10.1016/j.aquabot.2023.103711.Search in Google Scholar
Chiquillo, K. L., Barber, P. H., and Willette, D. A. (2019). Fruits and flowers of the invasive seagrass Halophila stipulacea in the Caribbean Sea. Bot. Mar. 62: 109–112, https://doi.org/10.1515/bot-2018-0052.Search in Google Scholar
Chiquillo, K. L., Barber, P. H., Vasquez, M. I., Cruz‐Rivera, E., Willette, D. A., Winters, G., and Fong, P. (2023). An invasive seagrass drives its own success in two invaded seas by both negatively affecting native seagrasses and benefiting from those costs. Oikos: e09403, https://doi.org/10.1111/oik.09403.Search in Google Scholar
Drew, E. A. (1979). Physiological aspects of primary production in seagrasses. Aquat. Bot. 7: 139–150, https://doi.org/10.1016/0304-3770-79-90018-4.Search in Google Scholar
Dural, B., Okudan, E., Demir, N., Senkardeşler, A., Erduğan, H., and Aysel, V. (2020). Observations on the flowering and fruit developments in Halophila stipulacea (Hydrocharitaceae) in the Aegean sSea (Turkey). J. Black Sea/Medit. Environ. 26: 1–16.Search in Google Scholar
García-Escudero, C. A., Tsigenopoulos, C. S., Manousaki, T., Tsakogiannis, A., Marbà, N., Vizzini, S., Duarte, C. M., and Apostolaki, E. T. (2024). Population genomics unveils the century-old invasion of the Seagrass Halophila stipulacea in the Mediterranean Sea. Mar. Biol. 171: 40, https://doi.org/10.1007/s00227-023-04361-7.Search in Google Scholar
Gerakaris, V. and Tsiamis, K. (2015). Sexual reproduction of the Lessepsian seagrass Halophila stipulacea in the Mediterranean sSea. Bot. Mar. 58: 51–53, https://doi.org/10.1515/bot-2014-0091.Search in Google Scholar
Hernández-Delgado, E. A., Toledo-Hernández, C., Ruíz-Díaz, C. P., Gómez-Andújar, N. X., Medina-Muñiz, J. L., Canals-Silander, M. F., and Suleimán-Ramos, S. E. (2020). Hurricane impacts and the resilience of the invasive sea vine, Halophila stipulacea: a case study from Puerto Rico. Estuaries Coast. 43: 1263–1283, https://doi.org/10.1007/s12237-019-00673-4.Search in Google Scholar
Kaldy, J.E., Sullivan, C., Dieppa, A., Cosme, I.C., Lugo, M.O., and Schiebout, M. (2023). First record of phytomyxid infection of the non-native seagrass Halophila stipulacea in Puerto Rico. Bot. Mar. 66: 93–97, https://doi.org/10.1515/bot-2022-0074.Search in Google Scholar PubMed PubMed Central
Kolatkova, V., Smulders, F.O., Ward, E., and Vohnik, M. (2022). Range expansion of Marinomyxa marina, a phytomyxid parasite of the invasive seagrass Halophila stipulacea, to the Caribbean. Aquat. Bot. 182: 103554, https://doi.org/10.1016/j.aquabot.2022.103554.Search in Google Scholar
Lipkin, Y. (1975a). Halophila stipulacea in Cyprus and Rhodes, 1967-1970. Aquat. Bot. 1: 309–320, https://doi.org/10.1016/0304-3770-75-90029-7.Search in Google Scholar
Lipkin, Y. (1975b). Halophila stipulacea, a review of a successful immigration. Aquat. Bot. 1: 203–215, https://doi.org/10.1016/0304-3770-75-90023-6.Search in Google Scholar
Malm, T. (2006). Reproduction and recruitment of the seagrass Halophila stipulacea. Aquat. Bot. 85: 345–349, https://doi.org/10.1016/j.aquabot.2006.05.008.Search in Google Scholar
Muthukrishnan, R., Chiquillo, K. L., Cross, C., Fong, P., Kelley, T., Toline, C. A., Zweng, R., and Willette, D. A. (2020). Little giants: a rapidly invading seagrass alters ecosystem functioning relative to native foundation species. Mar. Biol. 167: 1–15, https://doi.org/10.1007/s00227-020-03689-8.Search in Google Scholar
Nguyen, H. M., Kleitou, P., Kletou, D., Sapir, Y., and Winters, G. (2018). Differences in flowering sex ratios between native and invasive populations of the seagrass Halophila stipulacea. Bot. Mar. 61: 337–342, https://doi.org/10.1515/bot-2018-0015.Search in Google Scholar
Olinger, L. K., Heidmann, S. L., Durdall, A. N., Howe, C., Ramseyer, T., Thomas, S. G., Lasseigne, D. N., Brown, E. J., Cassell, J. S., Donihe, M. M., et al.. (2017). Altered juvenile fish communities associated with invasive Halophila stipulacea seagrass habitats in the U.S. Virgin Islands. PLoS One 12: e0188386, https://doi.org/10.1371/journal.pone.0188386.Search in Google Scholar PubMed PubMed Central
Oscar, M. A., Barak, S., and Winters, G. (2018). The tropical invasive seagrass, Halophila stipulacea, has a superior ability to tolerate dynamic changes in salinity levels compared to its freshwater relative, Vallisneria americana. Front Plant Sci. 9: 950, https://doi.org/10.3389/fpls.2018.00950.Search in Google Scholar PubMed PubMed Central
Ruiz, H. and Ballantine, D. L. (2004). Occurrence of the seagrass Halophila stipulacea in the tropical west Atlantic. Bull. Mar. Sci. 75: 131–135.Search in Google Scholar
Shantz, A. A., Ladd, M. C., and Burkepile, D. E. (2020). Overfishing and the ecological impacts of extirpating large parrotfish from Caribbean coral reefs. Ecol. Monogr. 90: e01403, https://doi.org/10.1002/ecm.1403.Search in Google Scholar
Sharon, Y., Levitan, O., Spungin, D., Berman-Frank, I., and Beer, S. (2011). Photoacclimation of the seagrass Halophila stipulacea to the dim irradiance at its 48‐meter depth limit. Limnol. Oceanogr. 56: 357–362, https://doi.org/10.4319/lo.2011.56.1.0357.Search in Google Scholar
Siegwalt, F., Jeantet, L., Lelong, P., Martin, J., Girondot, M., Bustamante, P., Benhalilou, A., Murgale, C., Andreani, L., Jacaria, F., et al.. (2022). Food selection and habitat use patterns of immature green turtles (Chelonia mydas) on Caribbean seagrass beds dominated by the alien species Halophila stipulacea. Glob. Ecol. Conserv. 37: e02169, https://doi.org/10.1016/j.gecco.2022.e02169.Search in Google Scholar
Smulders, F. O. H., Chiquillo, K. L., Willette, D. A., Barber, P. H., and Christianen, M. J. A. (2020). Inconclusive evidence of sexual reproduction of invasive Halophila stipulacea: a new field guide to encourage investigation of flower and fruit production throughout its invasive range. Bot. Mar. 63: 537–540, https://doi.org/10.1515/bot-2020-0046.Search in Google Scholar
Steiner, S. and Willette, D. (2015). The expansion of Halophila stipulacea (Hydrocharitaceae, Angiospermae) is changing the seagrass landscape in the commonwealth of Dominica, Lesser Antilles. Caribb. Nat. 22: 1–19.10.1079/cabicompendium.114669Search in Google Scholar
van Tussenbroek, B. I., van Katwijk, M. M., Bouma, T. J., van der Heide, T., Govers, L. L., and Leuven, R. S. E. W. (2016). Non-native seagrass Halophila stipulacea forms dense mats under eutrophic conditions in the Caribbean. J. Sea Res. 115: 1–5, https://doi.org/10.1016/j.seares.2016.05.005.Search in Google Scholar
Vera, B., Collado-Vides, L., Moreno, C., and van Tussenbroek, B.I. (2014). Halophila stipulacea (Hydrocharitaceae): a recent introduction to the continental waters of Venezuela. Caribb. J. Sci. 48: 66–70, https://doi.org/10.18475/cjos.v48i1.a11.Search in Google Scholar
Viana, I. G., Siriwardane-de Zoysa, R., Willette, D. A., and Gillis, L. G. (2019). Exploring how non-native seagrass species could provide essential ecosystems services: a perspective on the highly invasive seagrass Halophila stipulacea in the Caribbean Sea. Biol. Invasions 21: 1461–1472, https://doi.org/10.1007/s10530-019-01924-y.Search in Google Scholar
Waycott, M., van Dijk, K.-j., Calladine, A., Bricker, E., and Biffin, E. (2021). Genomics-based phylogenetic and population genetic analysis of global samples confirms Halophila johnsonii Eiseman as Halophila ovaliis (R.Br.) Hook.f. Front. Mar. Sci. 8: 40958.10.3389/fmars.2021.740958Search in Google Scholar
Wesselmann, M., Chefaoui, R. M., Marbà, N., Serrao, E. A., and Duarte, C. M. (2021). Warming threatens to propel the expansion of the exotic seagrass Halophila stipulacea. Front. Mar. Sci. 8: 759676, https://doi.org/10.3389/fmars.2021.759676.Search in Google Scholar
Willette, D. A. and Ambrose, R. F. (2012). Effects of the invasive seagrass Halophila stipulacea on the native seagrass, Syringodium filiforme, and associated fish and epibiota communities in the Eastern Caribbean. Aquat. Bot. 103: 74–82, https://doi.org/10.1016/j.aquabot.2012.06.007.Search in Google Scholar
Willette, D. A., Chiquillo, K. L., Cross, C., Fong, P., Kelley, T., Toline, C. A., Zweng, R., and Muthukrishnan, R. (2020). Growth and recovery after small-scale disturbance of a rapidly-expanding invasive seagrass in St. John, US Virgin Islands. J. Exp. Mar. Biol. Ecol. 523: 151265, https://doi.org/10.1016/j.jembe.2019.151265.Search in Google Scholar
Winters, G., Beer, S., Willette, D. A., Viana, I. G., Chiquillo, K. L., Beca-Carretero, P., Villamayor, B., Azcárate-García, T., Shem-Tov, R., Mwabvu, B., et al.. (2020). The tropical seagrass Halophila stipulacea: reviewing what we know from its native and invasive habitats, alongside identifying knowledge gaps. Front. Mar. Sci. 7: 300, https://doi.org/10.3389/fmars.2020.00300.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Physiology and Ecology
- Labelling kelps with 13C and 15N for isotope tracing or enrichment experiments
- Effects of thermal history on the heat shock response of bull kelp (Nereocystis luetkeana)
- Naturally occurring protoplasts in two Ulva spp. reveal a previously underestimated proliferation process
- Taxonomy/Phylogeny and Biogeography
- Unveiling Cladophora (Cladophorales, Chlorophyta) diversity in Turkey through DNA barcoding
- A new crustose brown alga, Endoplura geojensis sp. nov. (Ralfsiales, Phaeophyceae) from Korea based on molecular and morphological analyses
- Diversity of turf-forming Gelidium species growing on subtidal crustose coralline algae in the East Sea of Korea with a description of G. cristatum sp. nov.
- First record of the diatom pathogen Diatomophthora perforans cf. subsp. pleurosigmae (Oomycota) from the Mediterranean microphytobenthos
- Staminate flowers of the non-native seagrass, Halophila stipulacea, observed for the first time in Biscayne Bay, Florida, USA
- Chemistry and Applications
- Chemical and biological potential of fungi from deep-sea hydrothermal vents and an oxygen minimum zone
Articles in the same Issue
- Frontmatter
- In this issue
- Physiology and Ecology
- Labelling kelps with 13C and 15N for isotope tracing or enrichment experiments
- Effects of thermal history on the heat shock response of bull kelp (Nereocystis luetkeana)
- Naturally occurring protoplasts in two Ulva spp. reveal a previously underestimated proliferation process
- Taxonomy/Phylogeny and Biogeography
- Unveiling Cladophora (Cladophorales, Chlorophyta) diversity in Turkey through DNA barcoding
- A new crustose brown alga, Endoplura geojensis sp. nov. (Ralfsiales, Phaeophyceae) from Korea based on molecular and morphological analyses
- Diversity of turf-forming Gelidium species growing on subtidal crustose coralline algae in the East Sea of Korea with a description of G. cristatum sp. nov.
- First record of the diatom pathogen Diatomophthora perforans cf. subsp. pleurosigmae (Oomycota) from the Mediterranean microphytobenthos
- Staminate flowers of the non-native seagrass, Halophila stipulacea, observed for the first time in Biscayne Bay, Florida, USA
- Chemistry and Applications
- Chemical and biological potential of fungi from deep-sea hydrothermal vents and an oxygen minimum zone