Startseite Fungal diversity of deep-sea sediments in Mid-Oceanic Ridge area of the East Pacific and the South Indian Oceans
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fungal diversity of deep-sea sediments in Mid-Oceanic Ridge area of the East Pacific and the South Indian Oceans

  • Xixiang Tang

    Xixiang Tang is an associate researcher of Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources and executive deputy director of China Ocean Sample Repository (Biology).

    ORCID logo EMAIL logo
    , Libo Yu

    Libo Yu is a PhD student from School of Life Science and Technology, Harbin Institute of Technology in China. Her research interests focus on deep sea microbial diversity analysis and resource acquisition.

    , Wei Xu , Xianshun Zhang , Xiashutong Xu , Qilin Wang , Shiping Wei und Yinkun Qiu
Veröffentlicht/Copyright: 21. Februar 2020

Abstract

In this study, we investigated fungal diversity of six Mid-Oceanic Ridge sediment samples collected in the East Pacific and the South Indian Oceans by culture-dependent as well as culture-independent approaches. A total of 97 fungal isolates were cultured, belonging to 7 genera and 10 species, including Penicillium (2 species), Rhodotorula, Meyerozyma, Ophiocordyceps, Vishniacozyma, Aspergillus (3 species) and Phoma. Forty-six operational taxonomic units (OTUs) were identified from 933 clones selected from 12 clone libraries based on the internal transcribed spacers including 5.8S (ITS) and 18S rDNA. Two cultured fungi and 9 OTUs from the clone libraries showed similarities less than 97% with the existing sequences in GenBank, suggesting possible new fungal taxa. Most of the fungi belonged to the Ascomycota, to a lesser extent the Basidiomycota. Five fungal genera including Aspergillus, Rhodotorula, Ophiocordyceps, Phoma and Penicillium were recovered by both culture-dependent and culture-independent approaches. In addition to some common genera such as Aspergillus, Penicillium, Ophiocordyceps, Purpureocillium, Tolypocladium, Rhodotorula and Fusarium, some unique species were each found in the East Pacific and the South Indian Oceans. It is worth mentioning that Ophiocordyceps heteropoda was found at both oceans by culture-dependent and culture-independent approaches, although it was only previously reported from terrestrial habitats.

About the authors

Xixiang Tang

Xixiang Tang is an associate researcher of Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources and executive deputy director of China Ocean Sample Repository (Biology).

Libo Yu

Libo Yu is a PhD student from School of Life Science and Technology, Harbin Institute of Technology in China. Her research interests focus on deep sea microbial diversity analysis and resource acquisition.

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (no. 2015CB755901), COMRA Project of China (DY135-B2-16), Fujian Key Science and Technology Program (no. 2018N0017), Xiamen Ocean Economic Innovation and Development Demonstration Project (no. 16PZP001SF16), Scientific Research Foundation of Third Institute of Oceanography, SOA. (no. 2017002), and Xiamen Science and Technology Program (no. 3502Z20182029).

  1. Conflict of interest statement: The authors declare that there are no conflicts of interest.

References

Altschul, S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.10.1016/S0022-2836(05)80360-2Suche in Google Scholar

Burgaud, G., T. Le Calvez, D. Arzur, P. Vandenkoornhuyse and G. Barbier. 2009. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ. Microbiol. 11, 1588–1600.10.1111/j.1462-2920.2009.01886.xSuche in Google Scholar PubMed

Burgaud, G., L. Meslet-Cladière, G. Barbier and V.P. Edgcomb. 2014. Astonishing fungal diversity in deep-sea hydrothermal ecosystems: an untapped resource of biotechnological potential? In: Outstanding Marine Molecules. John Wiley & Sons, Ltd., Hoboken, NJ, USA. pp. 85–98.10.1002/9783527681501.ch04Suche in Google Scholar

Cebeci, G.N., I. Tosun and F. Aydin. 2017. The identification of Meyerozyma guilliermondii from blood cultures and surveillance samples in a university hospital in Northeast Turkey: a ten-year survey. J. Mycol. Med. 27, 506–513.10.1016/j.mycmed.2017.07.007Suche in Google Scholar PubMed

Chen, Z.J., J. Yuan, F. Sun, F. Zhang, Y. Chen, C.Y. Ding, J.W. Shi, Y.Y. Li and L.G. Yao. 2018. Planktonic fungal community structures and their relationship to water quality in the Danjiangkou Reservoir, China. Sci. Rep. 8, 10596.10.1038/s41598-018-28903-ySuche in Google Scholar PubMed PubMed Central

Cole, J.R., B. Chai, R.J. Farris, Q. Wang, S.A. Kulam, D.M. McGarrell, G.M. Garrity and J.M. Tiedje. 2005. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33, D294–D296.10.1093/nar/gki038Suche in Google Scholar PubMed PubMed Central

Corte, L., R.D. Cagno, M. Groenewald, L. Roscini, C. Colabella, M. Gobbetti and G. Cardinali. 2015. Phenotypic and molecular diversity of Meyerozyma guilliermondii strains isolated from food and other environmental niches, hints for an incipient speciation. Food Microbiol. 48, 206–215.10.1016/j.fm.2014.12.014Suche in Google Scholar PubMed

Damare, S., C. Raghukumar, U.D. Muraleedharan and S. Raghukumar. 2006. Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb. Technol. 39, 172–181.10.1016/j.enzmictec.2006.03.032Suche in Google Scholar

Dover, C.L.V., M.E. Ward, J.L. Scott, J. Underdown, B. Anderson, C. Gustafson, M. Whalen and R.B. Carnegie. 2010. A fungal epizootic in mussels at a deep-sea hydrothermal vent. Mar. Ecol. 28, 54–62.10.1111/j.1439-0485.2006.00121.xSuche in Google Scholar

Gadanho, M. and J.P. Sampaio. 2005. Occurrence and diversity of yeasts in the Mid-Atlantic Ridge hydrothermal fields near the Azores Archipelago. Microb. Ecol.50: 408–417.10.1007/s00248-005-0195-ySuche in Google Scholar PubMed

Gao, G.P., D.H. Yin, S.J. Chen, F. Xia, J. Yang, Q. Li and W. Wang. 2012. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. PLos One 7, e31806.10.1371/journal.pone.0031806Suche in Google Scholar PubMed PubMed Central

Jebaraj, C.S., C. Raghukumar, A. Behnke and T. Stoeck. 2010. Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. Fems Microbiol. Ecol. 71, 399–412.10.1111/j.1574-6941.2009.00804.xSuche in Google Scholar PubMed

Joel, E.L. and B.V. Bhimba. 2013. Evaluation of secondary metabolites from mangrove associated fungi Meyerozyma guilliermondii. Alex. J. Med. 49, 189–194.10.1016/j.ajme.2013.04.003Suche in Google Scholar

Kobayasi, Y. 1939. On the genus Cordyceps and its allies on cicadae from Japan. Bull. Biogeogr. Soc. Jpn. 9, 145–176.Suche in Google Scholar

Lai, X.T., L.X. Cao, H.M. Tan, S. Fang, Y.L. Huang and S.N. Zhou. 2007. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. Isme J. 1, 756–762.10.1038/ismej.2007.51Suche in Google Scholar PubMed

Lan, L. and J.P. Xu. 2006. Multiple gene genealogical analyses suggest divergence and recent clonal dispersal in the opportunistic human pathogen Candida guilliermondii. Microbiology 152, 1539–1549.10.1099/mic.0.28626-0Suche in Google Scholar PubMed

Le Calvez, T., G. Burgaud, S. Mahé, G. Barbier and P. Vandenkoornhuyse. 2009. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol. 75, 6415–6421.10.1128/AEM.00653-09Suche in Google Scholar PubMed PubMed Central

Li, C.R., M.Y. Chen, M. Wang, Y.R. Lin, M.Z. Fan and Z.Z. Li. 2006. Hirsutella heteropoda sp. nov. and its teleomorph, a new variety of Cordyceps heteropoda. Mycosystema25, 163–168.Suche in Google Scholar

Li, W., M. Wang, H. Pan, G. Burgaud, S. Liang, J. Guo, T. Luo Z. Li, S. Zhang and L. Cai. 2018. Highlighting patterns of fungal diversity and composition shaped by ocean currents using the East China Sea as a model. Mol. Ecol. 27, 564–576.10.1111/mec.14440Suche in Google Scholar PubMed

Liang, Z. 2007. Flora fungorum sinicorum. In: Cordyceps. Vol. 32, Science Press, Beijing. pp. 190.Suche in Google Scholar

Liu, Z.J., Y.H. Zhang, F.Y. Zhang, C.T. Hu, G.L. Liu and J. Pan. 2018. Microbial community analyses of the deteriorated storeroom objects in the Tianjin Museum using culture-independent and culture-dependent approaches. Front. Microbiol. 9, 802.10.3389/fmicb.2018.00802Suche in Google Scholar PubMed PubMed Central

López-García, P., A. Vereshchaka and D. Moreira. 2007. Eukaryotic diversity associated with carbonates and fluid–seawater interface in Lost City hydrothermal field. Environ. Microbiol. 9, 546–554.10.1111/j.1462-2920.2006.01158.xSuche in Google Scholar PubMed

Luo, Z.H. and K.L. Pang. 2014. Fungi from substrates in marine environment. In: (J.K. Misra, J.P. Tewari, S.K. Deshmukh, C. Vágvölgyi, eds) Progress in mycological research Vol. III. Fungi in/on various substrates. CRC Press, Baca Raton. pp. 97–114.Suche in Google Scholar

Mahé, S., V. Rédou, T. Le Calvez, P. Vandenkoornhuyse and G. Burgaud. 2014. Fungi in deep-sea environments and metagenomics. In: (F. Martin, ed) The ecological genomics of fungi. John Wiley & Sons, Inc., Hoboken, NJ, USA. pp. 325–354.10.1002/9781118735893.ch15Suche in Google Scholar

Mokhtarnejad, L., M. Arzanlou, A. Babai-Ahari, S. Di Mauro, A. Onofri, P. Buzzini and B. Turchetti. 2016. Characterization of basidiomycetous yeasts in hypersaline soils of the Urmia Lake National Park, Iran. Extremophiles 20, 915–928.10.1007/s00792-016-0883-1Suche in Google Scholar PubMed

Nagahama, T. and Y. Nagano. 2012. Cultured and uncultured fungal diversity in deep-sea environments. Prog. Mol. Subcell. Biol. 53, 173.10.1007/978-3-642-23342-5_9Suche in Google Scholar PubMed

Nagahama, T., E. Takahashi, Y. Nagano, M.A. Abdel-Wahab and M. Miyazaki. 2011. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ. Microbiol. 13, 2359–2370.10.1111/j.1462-2920.2011.02507.xSuche in Google Scholar PubMed

Nagano, Y., T. Miura, S. Nishi, A.O. Lima, C. Nakayama, V.H. Pellizari and K. Fujikura. 2017. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. Deep Sea Res. Part II Topical Stud. Oceanogr. 146, 59–67.10.1016/j.dsr2.2017.05.012Suche in Google Scholar

Orsi, W.D., T.A. Richards and W.R. Francis. 2018. Predicted microbial secretomes and their target substrates in marine sediment. Nat. Microbiol. 3, 32–37.10.1038/s41564-017-0047-9Suche in Google Scholar PubMed

Pachiadaki, M.G.,V. Rédou, D.J. Beaudoin, G. Burgaud and V.P. Edgcomb. 2016. Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Front. Microbiol. 7, 846.10.3389/fmicb.2016.00846Suche in Google Scholar PubMed PubMed Central

Pernice, M.C., C.R. Giner, R. Logares, J. Perera-Bel, S.G. Acinas, C.M. Duarte, J.M. Gasol and R. Massana. 2016. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–948.10.1038/ismej.2015.170Suche in Google Scholar PubMed PubMed Central

Pershina, E.V., E.A. Ivanova, A.G. Nagieva, A.T. Zhiengaliev, E.L. Chirak, E.E. Andronov and N.K. Sergaliev. 2016. A comparative analysis of microbiomes in natural and anthropogenically disturbed soils of northwestern Kazakhstan. Eurasian Soil Sci.49, 673–684.10.1134/S1064229316060090Suche in Google Scholar

R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www. R-project.org/.Suche in Google Scholar

Raghukumar, C., S. Raghukumar, G. Sheelu, S.M. Gupta, B.N. Nath and B.R. Rao. 2004. Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep-Sea Res. Part I 51, 1759–1768.10.1016/j.dsr.2004.08.002Suche in Google Scholar

Raghukumar, C., S.R. Damare and P.D. Singh. 2010. A review on deep-sea fungi: occurrence, diversity and adaptations. Bot. Mar. 53, 479–492.10.1515/bot.2010.076Suche in Google Scholar

Rédou, V., M. Navarri, L. Meslet-Cladière, G. Barbier and G. Burgaud. 2015. Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl. Environ. Microbiol. 81, 3571–3583.10.1128/AEM.04064-14Suche in Google Scholar PubMed PubMed Central

Rundkvist, D.V. and P.A. Sobolev. 2003. Seismicity on mid-oceanic ridges: A global geodynamic analysis. In: (D.K. Chowdhury, J.C. De Bremaecker, K. Lashgari, E. Nyland, R. Odom, M. Sen, M.M. Vishik, V.I. Keilis‐Borok, A.L. Levshin, G.M. Molchan and B.M. Naimark, eds) Computational seismology and geodynamics. Vol. 5, pp. 13–19.10.1029/CS005p0013Suche in Google Scholar

Savini, V., C. Catavitello, D. Onofrillo, G. Masciarelli, D. Astolfi, A. Balbinot, F. Febbo, C. D’Amario and D. D’Antonio. 2011. What do we know about Candida guilliermondii? A voyage throughout past and current literature about this emerging yeast. Mycoses 54, 434–441.10.1111/j.1439-0507.2010.01960.xSuche in Google Scholar PubMed

Singh, P., C. Raghukumar, P. Verma and Y. Shouche. 2010. Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers. 40, 89–102.10.1007/s13225-009-0009-5Suche in Google Scholar

Singh, P., C. Raghukumar, P. Verma and Y. Shouche. 2011. Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb. Ecol. 61, 507–517.10.1007/s00248-010-9765-8Suche in Google Scholar PubMed

Singh, P., C. Raghukumar, R.M. Meena, P. Verma and Y. Shouche. 2012a. Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecol. 5, 543–553.10.1016/j.funeco.2012.01.001Suche in Google Scholar

Singh, P., C. Raghukumar and Y. Shouche. 2012b. Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J. Microbiol. Biotechnol. 28, 659–667.10.1007/s11274-011-0859-3Suche in Google Scholar PubMed

Stefani, F.O.P., T.H. Bell, C. Marchand, I.E. de la Providencia, A. El Yassimi, M. St-Arnaud and M. Hijri. 2015. Culture-dependent and-independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoS One 10, e0128272.10.1371/journal.pone.0128272Suche in Google Scholar PubMed PubMed Central

Sung, J.M. 1996. The insects-born fungus of Korea in color [in Korean]. Seoul, Kyohak.Suche in Google Scholar

Sung, G.H., B. Shrestha, S.K. Han and J.M. Sung. 2011. Cultural characteristics of Ophiocordyceps heteropoda collected from Korea. Mycobiology 39, 1–6.10.4489/MYCO.2011.39.1.001Suche in Google Scholar PubMed PubMed Central

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731.10.1093/molbev/msr121Suche in Google Scholar PubMed PubMed Central

Tao, Z., N.F. Wang, Q.Z. Yu, Y.L. Hong and Y.Y. Li. 2015. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci. Rep. 5, 14524.10.1038/srep14524Suche in Google Scholar PubMed PubMed Central

Tisdall, J.M. and J.M. Oades. 2010. Organic matter and water-stable aggregates in soils. Eur. J Soil Sci. 33, 141–163.10.1111/j.1365-2389.1982.tb01755.xSuche in Google Scholar

Wang, G.Y., X. Wang, X.H. Liu and Q. Li. 2012. Diversity and Biogeochemical Function of Planktonic Fungi in the Ocean. Prog. Mol. Subcell. Biol. 53, 71–88.10.1007/978-3-642-23342-5_4Suche in Google Scholar PubMed

Wang, Y., W.P. Zhang, H.L. Cao, C.S. Shek, R.M. Tian, Y.H. Wong, Z. Batang, A. Al-Suwailem and P.Y. Qian. 2014. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea. Front. Microbiol. 5, 37.10.3389/fmicb.2014.00037Suche in Google Scholar PubMed PubMed Central

White, T.J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications 18, 315–322.10.1016/B978-0-12-372180-8.50042-1Suche in Google Scholar

White, T.J., T. Bruns, S. Lee and J. Taylor. 1994. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols 38, 315–322.10.1016/B978-0-12-372180-8.50042-1Suche in Google Scholar

Xu, J.P. and T.G. Mitchell. 2003. Geographical differences in human oral yeast flora. Clin. Infect. Dis. 36, 221–224.10.1086/345672Suche in Google Scholar PubMed

Xu, W., K.L. Pang and Z.H. Luo. 2014. High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean. Microb. Ecol. 68, 688–698.10.1007/s00248-014-0448-8Suche in Google Scholar PubMed

Xu, W., Z.H. Luo, S. Guo and K.L. Pang. 2016. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions. Deep Sea Res. Part I Oceanogr. Res. Pap. 109, 51–60.10.1016/j.dsr.2016.01.001Suche in Google Scholar

Xu, W., S.S. Guo, K.L. Pang and Z.H. Luo. 2017. Fungi associated with chimney and sulfide samples from a South Mid-Atlantic Ridge hydrothermal site: distribution, diversity and abundance. Deep-Sea Res. Pt. I.123, 48–55.10.1016/j.dsr.2017.03.004Suche in Google Scholar

Xu, W., L.F. Gong, K.L. Pang and Z.H. Luo. 2018a. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge. Deep Sea Res. Part I Oceanogr. Res Pap. 131, 16–26.10.1016/j.dsr.2017.11.001Suche in Google Scholar

Xu, W., S.S. Guo, L.F. Gong, G. He, K.L. Pang and Z.H. Luo. 2018b. Cultivable fungal diversity in deep-sea sediment of the East Pacific Ocean. Geomicrobiology 35, 1–8.10.1080/01490451.2018.1473531Suche in Google Scholar

Zhang, X.Y., Y. Zhang, X.Y. Xu and S.H. Qi. 2013. Diverse deep-sea fungi from the South China Sea and their antimicrobial activity. Curr. Microbiol. 67, 525–530.10.1007/s00284-013-0394-6Suche in Google Scholar PubMed

Zhang, X.Y., G.L. Tang, X.Y. Xu, X.H. Nong and S.H. Qi. 2014. Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLos One 9, e109118.10.1371/journal.pone.0109118Suche in Google Scholar PubMed PubMed Central

Zhang, X.Y., G.H. Wang, X.Y. Xu, X.H. Nong, J. Wang, M. Amin and S.H. Qi. 2016. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing. Deep Sea Res. Part I Oceanogr. Res. Pap. 116, 99–105.10.1016/j.dsr.2016.08.004Suche in Google Scholar

Zhang, T., L. Zhao, C. Yu, T. Wei and L. Yu. 2017. Diversity and bioactivity of cultured aquatic fungi from the High Arctic region. Adv. Polar. Sci. 28, 29–42.Suche in Google Scholar

Received: 2018-12-18
Accepted: 2020-01-14
Published Online: 2020-02-21
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bot-2018-0112/html?lang=de
Button zum nach oben scrollen