Startseite Biological targeting with nanoparticles: state of the art
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Biological targeting with nanoparticles: state of the art

  • Diana Kozlova und Matthias Epple EMAIL logo
Veröffentlicht/Copyright: 5. Dezember 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanoparticles are used in medicine to deliver drugs, for imaging, for vaccination and for local heating of tissue (tumor thermotherapy). If malignant tissue shall be addressed, it is of prime importance to direct the nanoparticles to their target. This can be accomplished by making use of physical effects (e.g., the EPR effect: enhanced permeation and retention) or by chemical modification of the nanoparticles to specifically recognize cells or tissues. The efficiency of the targeting can be assessed by in vitro cell culture experiments and also in vivo in animal experiments. As they are closest to the practical clinical application, in vivo imaging methods are particularly suitable to monitor the targeting. In general, a limited colloid-chemical stability of the nanoparticles in a biological environment and the formation of a protein corona around the nanoparticle may constrain their targeting ability. The current state of such targeting strategies is reviewed and discussed.


Corresponding author: Matthias Epple, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany, Phone: +49 201 2402; Fax: +49 201 1832621, E-mail:

We thank the Deutsche Forschungsgemeinschaft for generous finding of our work within the framework of the Transregional Collaborative Research Center (TRR60): Mutual interaction of chronic viruses with cells of the immune system: from fundamental research to immunotherapy and vaccination, and the priority program 1313: Biological responses to nanoparticles.

References

1. Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012;41:2885–911.10.1039/c2cs15260fSuche in Google Scholar PubMed

2. Stark WJ. Nanoparticles in biological systems. Angew Chem 2011;123:1276–93.10.1002/ange.200906684Suche in Google Scholar

3. Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med 2010;363:2434–43.10.1056/NEJMra0912273Suche in Google Scholar PubMed

4. Ferrari M. Frontiers in cancer nanomedicine: Directing mass transport through biological barriers. Trends Biotechnol 2010;28:181–8.10.1016/j.tibtech.2009.12.007Suche in Google Scholar PubMed PubMed Central

5. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine – challenge and perspectives. Angew Chem Int Ed 2009;48:872–97.10.1002/anie.200802585Suche in Google Scholar PubMed PubMed Central

6. Kreuter J. Nanoparticles – a historical perspective. Int J Pharm 2007;331:1–10.10.1016/j.ijpharm.2006.10.021Suche in Google Scholar PubMed

7. Lammers, T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Contr Rel 2012;161:175–87.10.1016/j.jconrel.2011.09.063Suche in Google Scholar PubMed

8. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Contr Rel 2010;148:135–46.10.1016/j.jconrel.2010.08.027Suche in Google Scholar PubMed

9. Orive G, Gascon AR, Hernandez RM, Dominnguez-Gil A, Pedraz JL. Techniques: New approaches to the delivery of biopharmaceuticals. Trends Pharmacol Sci 2004;25:382–7.10.1016/j.tips.2004.05.006Suche in Google Scholar PubMed

10. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543–57.Suche in Google Scholar

11. Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nature Mat 2009;8:15–23.10.1038/nmat2344Suche in Google Scholar PubMed PubMed Central

12. Sokolova V, Knuschke T, Buer J, Westendorf AM, Epple M. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater 2011;7:4029–36.10.1016/j.actbio.2011.07.010Suche in Google Scholar PubMed

13. Nangia S, Sureshkumar R. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir 2012;28:17666–71.10.1021/la303449dSuche in Google Scholar PubMed

14. Lvov YM, Pattekari P, Zhang X, Torchilin V. Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir 2011;27:1212–7.10.1021/la1041635Suche in Google Scholar PubMed PubMed Central

15. Khan DR. The use of nanocarriers for drug delivery in cancer therapy. J Cancer Sci Ther 2010;2:58–62.10.4172/1948-5956.1000024Suche in Google Scholar

16. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012;14:282–95.10.1208/s12248-012-9339-4Suche in Google Scholar PubMed PubMed Central

17. Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem Int Ed 2008;47: 1382–95.10.1002/anie.200703039Suche in Google Scholar PubMed

18. Knuschke T, Sokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, et al. Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J Immunol 2013;12:6221–9.10.4049/jimmunol.1202654Suche in Google Scholar PubMed

19. Homberger M, Simon U. On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil Trans R Soc A 2010;368:1405–53.10.1098/rsta.2009.0275Suche in Google Scholar PubMed

20. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed 2010;49:3280–94.10.1002/anie.200904359Suche in Google Scholar PubMed PubMed Central

21. Huang X, Neretina S, El-Sayed MA. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv Mater 2009;21:4880–910.10.1002/adma.200802789Suche in Google Scholar PubMed

22. Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 2008;37:2028–45.10.1039/b712179mSuche in Google Scholar PubMed

23. Sperling RA, Rivera P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev 2008;37:1896–1908.10.1039/b712170aSuche in Google Scholar PubMed

24. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res 2008;41:1721–30.10.1021/ar800035uSuche in Google Scholar PubMed

25. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008;41:1578–86.10.1021/ar7002804Suche in Google Scholar PubMed

26. Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei B, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 2008;130:10643–7.10.1021/ja801631cSuche in Google Scholar PubMed PubMed Central

27. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 2008;391:943–50.10.1007/s00216-007-1768-zSuche in Google Scholar PubMed

28. Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 2009;61:467–77.10.1016/j.addr.2009.03.007Suche in Google Scholar PubMed PubMed Central

29. Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, Gonzalez-Carreno T, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys 2009;42:224002.10.1088/0022-3727/42/22/224002Suche in Google Scholar

30. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 2003;36:R167–81.10.1088/0022-3727/36/13/201Suche in Google Scholar

31. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 2007;52:1653–61.10.1016/j.eururo.2006.11.023Suche in Google Scholar PubMed

32. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011;103:317–24.10.1007/s11060-010-0389-0Suche in Google Scholar PubMed PubMed Central

33. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008;83:761–9.10.1038/sj.clpt.6100400Suche in Google Scholar PubMed

34. Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012;63:185–98.10.1146/annurev-med-040210-162544Suche in Google Scholar PubMed

35. Balasubramanian SK, Liming Yang L, Yung LY, Ong CN, Ong WY, Yu LE. Characterization, purification, and stability of gold nanoparticles. Biomaterials 2010;31:9023–30.10.1016/j.biomaterials.2010.08.012Suche in Google Scholar PubMed

36. Mohanraj VJ, Chen Y. Nanoparticles – a review. Trop J Pharm Res 2006;5:561–73.Suche in Google Scholar

37. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol Rev 2001;53:283–318.Suche in Google Scholar

38. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur J Pharm Biopharm 2008;69:1–9.10.1016/j.ejpb.2007.08.001Suche in Google Scholar PubMed

39. Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, et al. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 2010;20:512–8.10.1039/B914875BSuche in Google Scholar

40. Grainger DW, Castner DG. Nanobiomaterials and nanoanalysis: Opportunities for improving the science to benefit biomedical technologies. Adv Mater 2008;20:867–77.10.1002/adma.200701760Suche in Google Scholar

41. Hahn A, Fuhlrott J, Loos A, Barcikowski S. Cytotoxicity and ion release of alloy nanoparticles. J Nanopart Res 2012;14:686.10.1007/s11051-011-0686-3Suche in Google Scholar PubMed PubMed Central

42. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010;31:3657–66.10.1016/j.biomaterials.2010.01.065Suche in Google Scholar PubMed

43. Farokhzad OC, Karp JM, Langer R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006;3:311–24.10.1517/17425247.3.3.311Suche in Google Scholar PubMed

44. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 2013;11:1–12.10.1186/1477-3155-11-26Suche in Google Scholar PubMed PubMed Central

45. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nano 2013;8:137–43.10.1038/nnano.2012.237Suche in Google Scholar PubMed

46. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 2013;135:1438–44.10.1021/ja309812zSuche in Google Scholar PubMed

47. Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotech 2012;7:779–86.10.1038/nnano.2012.207Suche in Google Scholar PubMed

48. Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF. Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 2012;6:8962–9.10.1021/nn3029953Suche in Google Scholar PubMed

49. Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 2004;20:6800–7.10.1021/la0497200Suche in Google Scholar PubMed

50. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomed 2011;6:715–28.10.2217/nnm.11.19Suche in Google Scholar PubMed PubMed Central

51. Kavitha K, BhalaMurugan GL. A review on PEG-ylationin anti-cancer drug delivery systems. Int J Pharm Biomed Sci 2013;4:296–304.Suche in Google Scholar

52. Sengupta S, Kulkarni A. Design principles for clinical efficacy of cancer nanomedicine: A look into the basics. ACS Nano 2013;7:2878–82.10.1021/nn4015399Suche in Google Scholar PubMed PubMed Central

53. Gupta AK, Curtis ASG. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004;25:3029–40.10.1016/j.biomaterials.2003.09.095Suche in Google Scholar PubMed

54. Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2010;2:23–30.10.1038/asiamat.2010.6Suche in Google Scholar

55. Leserman LD, Barbet J, Kourilsky F, Weinstein JN. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 1980;288:602–4.10.1038/288602a0Suche in Google Scholar PubMed

56. Arruebo M, Valladares M, Gonzalez-Fernandez A. Antibody-conjugated nanoparticles for biomedical applications. J Nanomater 2009;2009:1–24.10.1155/2009/439389Suche in Google Scholar

57. Khanna VK. Targeted delivery of nanomedicines. ISRN Pharmacology 2012;2012:571394.10.5402/2012/571394Suche in Google Scholar PubMed PubMed Central

58. Blanco MD, Teijon C, Olmo RM, Teijon JM. Targeted nanoparticles for cancer therapy. In Recent advances in novel drug carrier systems, 2012:242–78.10.5772/51382Suche in Google Scholar

59. Swami A, Shi J, Gadde S, Votruba AR, Kolishetti N, Farokhzad OC. Nanoparticles for targeted and temporally controlled drug delivery. In: Svenson S, Prud’homme RK, editors. Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. US: Springer. Available at: http://www.springer.com/engineering/book/978-1-4614-2304-1.Suche in Google Scholar

60. Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 2008;8:1063–70.10.1517/14712598.8.8.1063Suche in Google Scholar PubMed PubMed Central

61. Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, et al. Transferrin receptors and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 2012;1820:291–317.10.1016/j.bbagen.2011.07.016Suche in Google Scholar PubMed PubMed Central

62. Minko T. Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev 2004;56:491–509.10.1016/j.addr.2003.10.017Suche in Google Scholar PubMed

63. Medley CD, Bamrungsap S, Tan W, Smith JE. Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 2011;83: 727–34.10.1021/ac102263vSuche in Google Scholar PubMed PubMed Central

64. Aravind A, Yoshida Y, Maekawa T, Kumar DS. Aptamer-conjugated polymeric nanoparticles for targeted cancer therapy. Drug Deliv and Transl Res 2012;2:418–36.10.1007/s13346-012-0104-0Suche in Google Scholar PubMed

65. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot−aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007;7:3065–70.10.1021/nl071546nSuche in Google Scholar PubMed

66. Huang YF, Lin YW, Lin ZH, Chang HC. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 2009;11:775–83.10.1007/s11051-008-9424-xSuche in Google Scholar

67. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo PNAS 2006;103:6315–20.10.1073/pnas.0601755103Suche in Google Scholar PubMed PubMed Central

68. Delehanty JB, Boeneman K, Bradburne CE, Robertson K, Bongard JE, Medintz IL. Peptides for specific intracellular delivery and targeting of nanoparticles: Implications for developing nanoparticle-mediated drug delivery. Therapeutic Delivery 2010;13:411–33.10.4155/tde.10.27Suche in Google Scholar PubMed

69. Danhier F, Vroman B, Lecouturier N, Crokart C, Pourcelle V, Freichels H, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Contr Rel 2009;140:166–73.10.1016/j.jconrel.2009.08.011Suche in Google Scholar PubMed

70. Han HD, Mangala LS, Lee JW, Shahzad MMK, Kim HS, Shen D, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 2010;16:3910–22.10.1158/1078-0432.CCR-10-0005Suche in Google Scholar PubMed PubMed Central

71. Porta F, Lamers GE, Morrhayim J, Chatzopoulou A, Schaaf M, den Dulk H, et al. Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv Healthcare Mater 2013;2:281–6.10.1002/adhm.201200176Suche in Google Scholar PubMed

72. Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, et al. Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 2011;32: 8548–54.10.1016/j.biomaterials.2011.07.067Suche in Google Scholar PubMed PubMed Central

73. Hayashi K, Moriya M, Sakamoto W, Yogo T. Chemoselective synthesis of folic acid-functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater 2009;21:1318–25.10.1021/cm803113eSuche in Google Scholar

74. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012;2:3–44.10.7150/thno.3463Suche in Google Scholar PubMed PubMed Central

75. Gupta A, Gupta RK, Gupta GS. Targeting cells for drug and gene delivery: Emerging applications of mannans and mannan binding lectins. J Sci Ind Res 2009;68:465–83.Suche in Google Scholar

76. Zhu XL, Du YZ, Yu RS, Liu P, Shi D, Chen Y, et al. Galactosylated chitosan oligosaccharide nanoparticles for hepatocellular carcinoma cell-targeted delivery of adenosine triphosphate. Int J Mol Sci 2013;14:15755–66.10.3390/ijms140815755Suche in Google Scholar PubMed PubMed Central

77. Ma MY, Chen H, Chen Y, Zhang K, Wang X, Cui X, et al. Hyaluronic acid-conjugated mesoporous silica nanoparticles: Excellent colloidal dispersity in physiological fluids and targeting efficacy. J Mater Chem 2012;22:5615–21.10.1039/c2jm15489gSuche in Google Scholar

78. Thanh NKT, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano Today 2010;5:213–30.10.1016/j.nantod.2010.05.003Suche in Google Scholar

79. De M, Ghosh PS, Rotello VM. Applications of nanoparticles in biology. Adv Mater 2008;20:4225–41.10.1002/adma.200703183Suche in Google Scholar

80. Niemeyer CM. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem 2001;40:4128–58.10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-SSuche in Google Scholar

81. Shiver-Lake LC, Donner B, Edelstein R, Breslin K, Bhatia SK, Ligler FS. Antibody immobilization using heterobifunctional crosslinkers. Biosens Bioelectron 1997;12:1101–6.10.1016/S0956-5663(97)00070-5Suche in Google Scholar

82. Dev Das R, Maji S, Das S, RoyChaudhuri C. Optimization of covalent antibody immobilization on macroporous silicon solid supports. Appl Surf Sci 2010;256:5867–75.10.1016/j.apsusc.2010.03.066Suche in Google Scholar

83. Wolcott A, Gerion D, Visconte M, Sun J, Schwartzberg A, Chen S, et al. Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins. J Phys Chem 2006;110: 5779–89.10.1021/jp057435zSuche in Google Scholar

84. Yang P, Zhang A, Sun H, Liu F, Jiang Q, Cheng X. Highly luminescent quantum dots functionalized and their conjugation with IgG. J Colloid Interface Sci 2010;345:222–7.10.1016/j.jcis.2010.01.072Suche in Google Scholar

85. Mahon E, Salvati A, Bombelli FB, Lynch I, Dawson KA. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Contr Rel 2012;161:164–74.10.1016/j.jconrel.2012.04.009Suche in Google Scholar

86. Hu L, Mao Z, Gao C. Colloidal particles for cellular uptake and delivery. J Mater Chem 2009;19:3108–15.10.1039/b815958kSuche in Google Scholar

87. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422:37–44.10.1038/nature01451Suche in Google Scholar PubMed

88. Thurn KT, Brown EMB, Wu A, Vogt S, Lai B, Maser J, et al. Nanoparticles for applications in cellular imaging. Nanoscale Res Lett 2007;2:430–41.10.1007/s11671-007-9081-5Suche in Google Scholar PubMed PubMed Central

89. Fernando LP, Kandel PK, Yu J, McNeill J, Ackroyd PC, Christensen KA. Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules 2010;11:2675–82.10.1021/bm1007103Suche in Google Scholar PubMed PubMed Central

90. Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K, et al. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 2008;8:1135–43.10.1002/mabi.200800123Suche in Google Scholar PubMed

91. Sokolova V, Kozlova D, Knuschke T, Buer J, Westendorf AM, Epple M. Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells. Acta Biomater 2013;9:7527–35.10.1016/j.actbio.2013.02.034Suche in Google Scholar PubMed

92. Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev 2012;41:2718–39.10.1039/c2cs15309bSuche in Google Scholar PubMed

93. Iversen TG, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011;6:176–85.10.1016/j.nantod.2011.02.003Suche in Google Scholar

94. Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 2011;7:347–54.10.1016/j.actbio.2010.08.003Suche in Google Scholar PubMed

95. Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: The need of the hour. Toxicol Appl Pharmacol 2012;258:151–65.10.1016/j.taap.2011.11.010Suche in Google Scholar PubMed

96. Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Contr Rel 2011;153:198–205.10.1016/j.jconrel.2011.06.001Suche in Google Scholar PubMed PubMed Central

97. Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009;17:2950–62.10.1016/j.bmc.2009.02.043Suche in Google Scholar PubMed

98. Anajwala CC, Jani GK, Swamy SMV. Current trends of nanotechnology for cancer therapy. Intern J Pharm Sci Nanotechnol 2010;3:1043–56.10.37285/ijpsn.2010.3.3.2Suche in Google Scholar

99. Barakat NS, Bin Taleb DA, Al Salehi AS. Target nanoparticles: An appealing drug delivery platform. J Nanomedic Nanotechnol 2012;S4:1–9.10.4172/2157-7439.S4-009Suche in Google Scholar

100. Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ, et al. Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2008;2:449–56.10.1021/nn700370bSuche in Google Scholar PubMed

101. Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res 2004;64:7668–72.10.1158/0008-5472.CAN-04-2550Suche in Google Scholar PubMed

102. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting and drug delivery. ASC Nano 2008;2:889–96.10.1021/nn800072tSuche in Google Scholar PubMed PubMed Central

103. Kozlova D, Chernousova S, Knuschke T, Buer J, Westendorf AM, Epple M. Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J Mater Chem 2012;22:396–404.10.1039/C1JM14683ASuche in Google Scholar

104. Bandyopadhyay A, Fine RL, Demento S, Bockenstedt LK, Fahmy TM. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials 2011;32:3094–105.10.1016/j.biomaterials.2010.12.054Suche in Google Scholar PubMed PubMed Central

105. Zhu Z, Xie C, Liu Q, Zhen X, Zheng X, Wu W, et al. The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 2011;32:9525–35.10.1016/j.biomaterials.2011.08.072Suche in Google Scholar PubMed

106. Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Contr Rel 2007;121:156–67.10.1016/j.jconrel.2007.05.026Suche in Google Scholar PubMed

107. Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Contr Rel 2007;118:38–53.10.1016/j.jconrel.2006.11.015Suche in Google Scholar PubMed

108. Hu K, Shi Y, Jiang W, Han J, Huang S, Jiag X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinson′s disease. Int J Pharm 2011;415:273–83.10.1016/j.ijpharm.2011.05.062Suche in Google Scholar PubMed

109. Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, et al. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 2010;31:5246–57.10.1016/j.biomaterials.2010.03.011Suche in Google Scholar PubMed

110. Tian X-H, Wei F, Wang T-X, Wang P, Lin X-N, Wang J, et al. In vitro and in vivo studies on gelatin-siloxane nanoparticles conjugated with SynB peptide to increase drug delivery to the brain. Int J Nanomed 2012;7:1031–41.Suche in Google Scholar

111. Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011;32:7127–38.10.1016/j.biomaterials.2011.06.024Suche in Google Scholar PubMed

112. Quek C-H, Leong KW. Near-infrared fluorescent nanoprobes for in vivo optical imaging. Nanomaterials 2012;2:92–112.10.3390/nano2020092Suche in Google Scholar PubMed PubMed Central

113. Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 2007;18: 17–25.10.1016/j.copbio.2007.01.003Suche in Google Scholar PubMed

114. Gibbs SL. Near infrared fluorescence for image-guided surgery. Quant Imaging Med Surg 2012;2:177–87.Suche in Google Scholar

115. Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad MS, et al. In vivo biodistribution and clearance studies using multimodal ormosil nanoparticles. ACS Nano 2010;23:699–708.10.1021/nn901146ySuche in Google Scholar PubMed PubMed Central

116. Wang J, Yao K, Wang C, Tang C, Jiang X. Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. J Mater Chem B 2013;1:2324–32.10.1039/c3tb20100gSuche in Google Scholar PubMed

117. Hou Y, Liu Y, Chen Z, Gu N, Wang J. Manufacture of IRDye800CW-coupled Fe3O4 nanoparticles and their applications in cell labeling and in vivo imaging. J Nanobiotechnol 2010;8:1–14.10.1186/1477-3155-8-25Suche in Google Scholar PubMed PubMed Central

118. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Ann Rev Biochem 2009;78:857–902.10.1146/annurev.biochem.78.081307.110540Suche in Google Scholar PubMed

Received: 2013-9-2
Accepted: 2013-9-25
Published Online: 2013-12-05
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bnm-2013-0020/html
Button zum nach oben scrollen