Abstract
Osteoporosis and osteoporotic fractures have a high impact on the quality of life of patients and on the financial aspects of Western health care systems. There is a tremendous need for improvement of the treatment outcome in osteoporotic fracture patients and biomaterials are of interest to stimulate fracture healing in those patients. For adequate characterization of biomaterials for the indication of osteoporotic fractures a clinically relevant animal model with a fracture defect in the metaphyseal region of a long bone in an osteoporotic animal is required. We recently developed a 3–5 mm wedge shaped osteotomy model in the distal metaphysis of the femur in osteoporotic rats. There are different biomaterials approaches to stimulate fracture healing in osteoporotic fractures and recently published results suggest that the composite implants from osteoconductive carriers combined with osteoanabolic agents, e.g., strontium-modified calcium phosphate cement, can enhance new bone formation. Further in vivo and clinical research will be necessary in the future for introduction of new and different types of biomaterials for osteoporotic fracture patients into all day clinical practice.
References
1. Claes L, Veeser A, Göckelmann M, Simon U, Ignatius A. A novel model to study metaphyseal bone healing under defined biomechanical conditions. Arch Orthop Trauma Surg 2009;129:923–8.10.1007/s00402-008-0692-9Search in Google Scholar
2. Danielsen CC, Mosekilde L, Svenstrup B. Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int 1993;52:26–33.10.1007/BF00675623Search in Google Scholar
3. Peng Z, Tuukkanen J, Zhang H, Jämsä T, Väänänen HK. The mechanical strength of bone in different rat models of experimental osteoporosis. Bone 1994;15:523–32.10.1016/8756-3282(94)90276-3Search in Google Scholar
4. Stuermer EK, Sehmisch S, Rack T, Wenda E, Seidlova-Wuttke D, Tezval M, et al. Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat. Langenbecks Arch Surg 2010;395:163–172.10.1007/s00423-008-0436-xSearch in Google Scholar
5. Thompson DD, Simmons HA, Pirie CM, Ke HZ. FDA Guidelines and animal models for osteoporosis. Bone 1995;17:125S–33S.10.1016/8756-3282(95)98389-5Search in Google Scholar
6. Wronski TJ, Lowry PL, Walsh CC, Ignaszewski LA. Skeletal alterations in ovariectomized rats. Calcif Tissue Int 1985;37:324–8.10.1007/BF02554882Search in Google Scholar
7. Riggs BL, Melton LJ. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 1995;17:505S–11S.10.1016/8756-3282(95)00258-4Search in Google Scholar
8. Leucht P, Jiang J, Cheng D, Liu B, Dhamdhere G, Fang MY, et al. Wnt3a reestablishes osteogenic capacity to bone grafts from aged animals. J Bone Joint Surg Am 2013;95:1278–88.10.2106/JBJS.L.01502Search in Google Scholar PubMed PubMed Central
9. Cao L, Liu G, Gan Y, Fan Q, Yang F, Zhang X, et al. The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats. Biomaterials 2012;33:5076–84.10.1016/j.biomaterials.2012.03.069Search in Google Scholar PubMed
10. Garcia P, Histing T, Holstein JH, Klein M, Laschke MW, Matthys R, et al. Rodent animal models of delayed bone healing and non-union formation: a comprehensive review. Eur Cell Mater 2013;26:1–14.10.22203/eCM.v026a01Search in Google Scholar
11. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 2007;13:1–10.10.22203/eCM.v013a01Search in Google Scholar PubMed
12. Adili A, Bhandari M, Schemitsch EH. The biomechanical effect of high-pressure irrigation on diaphyseal fracture healing in vivo. J Orthop Trauma 2002;16:413–7.10.1097/00005131-200207000-00008Search in Google Scholar PubMed
13. Bolander ME, Sabbagh R, Jeng C, Vivianno D, Boden SD. Estrogen treatment during fracture repair strengthens healing callus in an osteoporotic model. Trans Orthop Res Soc 1992;17:138.Search in Google Scholar
14. Cao Y, Mori S, Mashiba T, Westmore MS, Ma L, Sato M, et al. Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res 2002;17:2237–46.10.1359/jbmr.2002.17.12.2237Search in Google Scholar PubMed
15. Garcia P, Speidel V, Scheuer C, Laschke MW, Holstein JH, Histing T, et al. Low dose erythropoietin stimulates bone healing in mice. J Orthop Res 2011;29:165–72.10.1002/jor.21219Search in Google Scholar PubMed
16. Histing T, Anton C, Scheuer C, Garcia P, Holstein JH, Klein M, et al. Melatonin impairs fracture healing by suppressing RANKL-mediated bone remodeling. J Surg Res 2012a;173:83–90.10.1016/j.jss.2010.08.036Search in Google Scholar PubMed
17. Jawad MU, Fritton KE, Ma T, Ren PG, Goodman SB, Ke HZ, et al. Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J Orthop Res 2013;31:155–63.10.1002/jor.22186Search in Google Scholar PubMed
18. Krischak GD, Augat P, Sorg T, Blakytny R, Kinzl L, Claes L, et al. Effects of diclofenac on periosteal callus maturation in osteotomy healing in an animal model. Arch Orthop Trauma Surg 2007b;127:3–9.10.1007/s00402-006-0202-xSearch in Google Scholar PubMed
19. Li R, Nauth A, Li C, Qamirani E, Atesok K, Schemitsch EH. Expression of VEGF gene isoforms in a rat segmental bone defect model treated with EPCs. J Orthop Trauma 2012;26: 689–92.10.1097/BOT.0b013e318266eb7eSearch in Google Scholar PubMed
20. Mehta M, Schell H, Schwarz C, Peters A, Schmidt-Bleek K, Ellinghaus A, et al. A 5-mm femoral defect in female but not in male rats leads to a reproducible atrophic non-union. Arch Orthop Trauma Surg 2011;131:121–9.10.1007/s00402-010-1155-7Search in Google Scholar PubMed
21. Röntgen V, Blakytny R, Matthys R, Landauer M, Wehner T, Göckelmann M, et al. Fracture healing in mice under controlled rigid and flexible conditions using an adjustable external fixator. J Orthop Res 2010;28:1456–62.10.1002/jor.21148Search in Google Scholar PubMed
22. Stürmer EK, Seidlová-Wuttke D, Sehmisch S, Rack T, Wille J, Frosch KH, et al. Standardized bending and breaking test for the normal and osteoporotic metaphyseal tibias of the rat: effect of estradiol, testosterone, and raloxifene. J Bone Miner Res 2006;21:89–96.10.1359/JBMR.050913Search in Google Scholar PubMed
23. Tarantino U, Cerocchi I, Scialdoni A, Saturnino L, Feola M, Celi M, et al. Bone healing and osteoporosis. Aging Clin Exp Res 2011;23:62–4.Search in Google Scholar
24. Virk MS, Alaee F, Tang H, Ominsky MS, Ke HZ, Lieberman JR. Systemic administration of sclerostin antibody enhances bone repair in a critical-sized femoral defect in a rat model. J Bone Joint Surg Am 2013;95:694–701.10.2106/JBJS.L.00285Search in Google Scholar PubMed PubMed Central
25. Beck A, Krischak G, Sorg T, Augat P, Farker K, Merkel U, et al. Influence of diclofenac (group of nonsteroidal anti-inflammatory drugs) on fracture healing. Arch Orthop Trauma Surg 2003;123:327–32.10.1007/s00402-003-0537-5Search in Google Scholar PubMed
26. Histing T, Holstein JH, Garcia P, Matthys R, Kristen A, Claes L, et al. Ex vivo analysis of rotational stiffness of different osteosynthesis techniques in mouse femur fracture. J Orthop Res 2009;27:1152–6.10.1002/jor.20849Search in Google Scholar PubMed
27. Holstein JH, Menger MD, Culemann U, Meier C, Pohlemann T. Development of a locking femur nail for mice. J Biomech 2007a;40:215–9.10.1016/j.jbiomech.2005.10.034Search in Google Scholar PubMed
28. Krischak GD, Augat P, Blakytny R, Claes L, Kinzl L, Beck A. The non-steroidal anti-inflammatory drug diclofenac reduces appearance of osteoblasts in bone defect healing in rats. Arch Orthop Trauma Surg 2007a;127:453–8.10.1007/s00402-007-0288-9Search in Google Scholar PubMed
29. Bonnarens F, Einhorn TA. Production of a standard closed fracture in laboratory animal bone. J Orthop Res 1984;2:97–101.10.1002/jor.1100020115Search in Google Scholar PubMed
30. Aerssens J, van Audekercke R, Talalaj M, Geusens P, Bramm E, Dequeker J. Effect of 1alpha-vitamin D3 and estrogen therapy on cortical bone mechanical properties in the ovariectomized rat model. Endocrinology 1996;137:1358–64.10.1210/endo.137.4.8625911Search in Google Scholar PubMed
31. Canettieri AC, Colombo CE, Chin CM, Faig-Leite H. Femur bone repair in ovariectomized rats under the local action of alendronate, hydroxyapatite and the association of alendronate and hydroxyapatite. Int J Exp Pathol 2009;90:520–6.10.1111/j.1365-2613.2009.00674.xSearch in Google Scholar PubMed PubMed Central
32. Giannoudis P, Tzioupis C, Almalki T, Buckley R. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury 2007;38(Suppl 1):S90–9.10.1016/j.injury.2007.02.014Search in Google Scholar PubMed
33. He YX, Zhang G, Pan XH, Liu Z, Zheng LZ, Chan CW, et al. Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: a drill-hole defect model. Bone 2011;48:1388–1400.10.1016/j.bone.2011.03.720Search in Google Scholar
34. Hollinger JO, Onikepe AO, MacKrell J, Einhorn T, Bradica G, Lynch S, et al. Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and an injectable beta-tricalcium phosphate/collagen matrix. J Orthop Res 2008;26:83–90.10.1002/jor.20453Search in Google Scholar
35. Kubo T, Shiga T, Hashimoto J, Yoshioka M, Honjo H, Urabe M, et al. Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J Steroid Biochem Mol Biol 1999;68:197–202.10.1016/S0960-0760(99)00032-1Search in Google Scholar
36. Namkung-Matthai H, Appleyard R, Jansen J, Hao Lin J, Maastricht S, Swain M, et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 2001;28:80–6.10.1016/S8756-3282(00)00414-2Search in Google Scholar
37. Oliver RA, Yu Y, Yee G, Low AK, Diwan AD, Walsh WR. Poor histological healing of a femoral fracture following 12 months of oestrogen deficiency in rats. Osteoporos Int 2013;24:2581–9.10.1007/s00198-013-2345-2Search in Google Scholar PubMed
38. Tang Y, Tang W, Lin Y, Long J, Wang H, Liu L, et al. Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biol Int 2008;32:1150–7.10.1016/j.cellbi.2008.06.005Search in Google Scholar PubMed
39. Xu SW, Yu R, Zhao GF, Wang JW. Early period of fracture healing in ovariectomized rats. Chin J Traumatol 2003;6:160–6.Search in Google Scholar
40. Histing T, Klein M, Stieger A, Stenger D, Steck R, Matthys R, et al. A new model to analyze metaphyseal bone healing in mice. J Surg Res 2012b;178:715–21.10.1016/j.jss.2012.04.007Search in Google Scholar PubMed
41. Holstein JH, Menger MD, Scheuer C, Meier C, Culemann U, Wirbel RJ, et al. Erythropoietin (EPO): EPO-receptor signaling improves early endochondral ossification and mechanical strength in fracture healing. Life Sci 2007b;80:893–900.10.1016/j.lfs.2006.11.023Search in Google Scholar PubMed
42. Kolios L, Sehmisch S, Daub F, Rack T, Tezval M, Stuermer KM, et al. Equol but not genistein improves early metaphyseal fracture healing in osteoporotic rats. Planta Med 2009;75:459–65.10.1055/s-0029-1185380Search in Google Scholar PubMed
43. McDonald MM, Morse A, Mikulec K, Peacock L, Yu N, Baldock PA, et al. Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial defects in ovariectomized rats. J Orthop Res 2012;30:1541–8.10.1002/jor.22109Search in Google Scholar PubMed
44. Monfoulet L, Rabier B, Chassande O, Fricain JC. Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue Int 2010;86: 72–81.10.1007/s00223-009-9314-ySearch in Google Scholar
45. Uusitalo H, Rantakokko J, Ahonen M, Jämsä T, Tuukkanen J, KäHäri V, et al. A metaphyseal defect model of the femur for studies of murine bone healing. Bone 2001;28:423–9.10.1016/S8756-3282(01)00406-9Search in Google Scholar
46. Zhang Y, Cheng N, Miron R, Shi B, Cheng X. Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 2012;33: 6698–708.10.1016/j.biomaterials.2012.06.021Search in Google Scholar PubMed PubMed Central
47. Mills LA, Simpson AH. In vivo models of bone repair. J Bone Joint Surg Br 2012;94:865–74.Search in Google Scholar
48. Alt V, Thormann U, Ray S, Zahner D, Dürselen L, Lips K, et al. A new metaphyseal bone defect model in osteoporotic rats to study biomaterials for the enhancement of bone healing in osteoporotic fractures. Acta Biomater 2013;9:7035–42.10.1016/j.actbio.2013.02.002Search in Google Scholar PubMed
49. Govindarajan P, Schlewitz G, Schliefke N, Weisweiler D, Alt V, Thormann U, et al. Implications of combined ovariectomy/multi-deficiency diet on rat bone with age-related variation in bone parameters and bone loss at multiple skeletal sites by DEXA. Med Sci Monit Basic Res 2013;19:76–86.10.12659/MSMBR.883815Search in Google Scholar PubMed PubMed Central
50. Heiss C, Govindarajan P, Schlewitz G, Hemdan NY, Schliefke N, Alt V, et al. Induction of osteoporosis with its influence on osteoporotic determinants and their interrelationships in rats by DEXA. Med Sci Monit 2012;18:BR199–207.10.12659/MSM.882895Search in Google Scholar PubMed PubMed Central
51. Biver E, Hardouin P, Caverzasio J. The “bone morphogenic proteins” pathways in bone and joint diseases: translational perspectives from physiopathology to therapeutic targets. Cytokine Growth Factor Rev 2013;24:69–81.10.1016/j.cytogfr.2012.06.003Search in Google Scholar PubMed
52. Alt V, Kögelmaier DV, Lips KS, Witt V, Pacholke S, Heiss C, et al. Assessment of angiogenesis in osseointegration of a silica-collagen biomaterial using 3D-nano-CT. Acta Biomater 2011;7:3773–9.10.1016/j.actbio.2011.06.024Search in Google Scholar PubMed
53. Liu Y, Cao L, Ray S, Thormann U, Hillengass J, Delorme S, et al. Osteoporosis influences osteogenic but not angiogenic response during bone defect healing in a rat model. Injury 2013;44:923–9.10.1016/j.injury.2013.02.029Search in Google Scholar PubMed
54. Goldhahn J, Scheele WH, Mitlak BH, Abadie E, Aspenberg P, Augat P, et al. Clinical evaluation of medicinal products for acceleration of fracture healing in patients with osteoporosis. Bone 2008;43:343–7.10.1016/j.bone.2008.04.017Search in Google Scholar PubMed
55. Low KL, Tan SH, Zein SH, Roether JA, Mouriño V, Boccaccini AR. Calcium phosphate-based composites as injectable bone substitute materials. J Biomed Mater Res B Appl Biomater 2010;94:273–86.10.1002/jbm.b.31619Search in Google Scholar PubMed
56. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials 2006;27:2171–7.10.1016/j.biomaterials.2005.11.023Search in Google Scholar PubMed
57. Gong T, Wang Z, Zhang Y, Sun C, Yang Q, Troczynski T, et al. Preparation, characterization, release kinetics and in vitro cytotoxicity of calcium silicate cement as a risedronate delivery system. J Biomed Mater Res A 2013 [Epub ahead of print].10.1002/jbm.a.34908Search in Google Scholar PubMed
58. Wu CC, Wang CC, Lu DH, Hsu LH, Yang KC, Lin FH. Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats. Biomed Mater 2012;7:035009.10.1088/1748-6041/7/3/035009Search in Google Scholar PubMed
59. Li M, Liu X, Liu X, Ge B. Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: a pilot study. Clin Orthop Relat Res 2010a;468:1978–85.10.1007/s11999-010-1321-9Search in Google Scholar PubMed PubMed Central
60. Wang Y, Tran KK, Shen H, Grainger DW. Selective local delivery of RANK siRNA to bone phagocytes using bone augmentation biomaterials. Biomaterials 2012;33:8540–7.10.1016/j.biomaterials.2012.07.039Search in Google Scholar PubMed PubMed Central
61. Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 2008;42:129–38.10.1016/j.bone.2007.08.043Search in Google Scholar PubMed
62. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone 2007;40:S5–8.10.1016/j.bone.2007.02.003Search in Google Scholar
63. Andersen OZ, Offermanns V, Sillassen M, Almtoft KP, Andersen IH, Sørensen S, et al. Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials 2013;34:5883–90.10.1016/j.biomaterials.2013.04.031Search in Google Scholar PubMed
64. Park JW, Kim HK, Kim YJ, Jang JH, Song H, Hanawa T. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Acta Biomater 2010a;6:2843–51.10.1016/j.actbio.2010.01.017Search in Google Scholar PubMed
65. Park JW, Kim YJ, Jang JH, Song H. Positive modulation of osteogenesis- and osteoclastogenesis-related gene expression with strontium-containing microstructured Ti implants in rabbit cancellous bone. J Biomed Mater Res A 2013;101:298–306.10.1002/jbm.a.34433Search in Google Scholar PubMed
66. Park JW, Kim YJ, Jang JH. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces. Clin Oral Implants Res 2010b;21: 398–408.10.1111/j.1600-0501.2009.01863.xSearch in Google Scholar PubMed
67. Xin Y, Jiang J, Huo K, Hu T, Chu PK. Bioactive SrTiO(3) nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants. ACS Nano 2009;3:3228–34.10.1021/nn9007675Search in Google Scholar PubMed
68. Zhao L, Wang H, Huo K, Zhang X, Wang W, Zhang Y, et al. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials 2013;34:19–29.10.1016/j.biomaterials.2012.09.041Search in Google Scholar PubMed
69. Fu DL, Jiang QH, He FM, Yang GL, Liu L. Fluorescence microscopic analysis of bone osseointegration of strontium-substituted hydroxyapatite implants. J Zhejiang Univ Sci B 2012;13:364–71.10.1631/jzus.B1100381Search in Google Scholar PubMed PubMed Central
70. Li Y, Li Q, Zhu S, Luo E, Li J, Feng G, et al. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 2010b;31:9006–14.10.1016/j.biomaterials.2010.07.112Search in Google Scholar PubMed
71. Schumacher M, Henß A, Rohnke M, Gelinsky M. A novel and easy-to-prepare strontium(II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater 2013;9:7536–44.10.1016/j.actbio.2013.03.014Search in Google Scholar PubMed
72. Thormann U, Ray S, Sommer U, Elkhassawna T, Rehling T, Hundgeburth M, et al. Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials 2013;34:8589–98.10.1016/j.biomaterials.2013.07.036Search in Google Scholar PubMed
73. Yu Z, Zhu T, Li C, Shi X, Liu X, Yang X, et al. Improvement of intertrochanteric bone quality in osteoporotic female rats after injection of polylactic acid-polyglycolic acid copolymer/collagen type I microspheres combined with bone mesenchymal stem cells. Int Orthop 2012;36:2163–71.10.1007/s00264-012-1543-4Search in Google Scholar PubMed PubMed Central
©2013 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Editorial
- Milestones in Biomaterials Research: Special Issue on the occasion of the 20th anniversary of the German Society of Biomaterials
- Reviews
- Biomaterials – a history of 7000 years
- Biomaterials for enhancement of bone healing in osteoporotic fractures
- Surface functionalization of biomaterials with tissue-inductive artificial extracellular matrices
- Cell-material interaction
- Biological targeting with nanoparticles: state of the art
- Design and fabrication of scaffold-based tissue engineering
- Special Issue: Nanosafety (Part 2)
- Review
- The bio-nano-interface in predicting nanoparticle fate and behaviour in living organisms: towards grouping and categorising nanomaterials and ensuring nanosafety by design
- Highlights
- Antimicrobial efficacy, cytotoxicity, and ion release of mixed metal (Ag, Cu, Zn, Mg) nanoparticle polymer composite implant material
- Silver and carbon nanoparticles toxicity in sea urchin Paracentrotus lividus embryos
- Letter
- Assessing the impact of the physical properties of industrially produced carbon nanotubes on their interaction with human primary macrophages in vitro
Articles in the same Issue
- Masthead
- Masthead
- Editorial
- Milestones in Biomaterials Research: Special Issue on the occasion of the 20th anniversary of the German Society of Biomaterials
- Reviews
- Biomaterials – a history of 7000 years
- Biomaterials for enhancement of bone healing in osteoporotic fractures
- Surface functionalization of biomaterials with tissue-inductive artificial extracellular matrices
- Cell-material interaction
- Biological targeting with nanoparticles: state of the art
- Design and fabrication of scaffold-based tissue engineering
- Special Issue: Nanosafety (Part 2)
- Review
- The bio-nano-interface in predicting nanoparticle fate and behaviour in living organisms: towards grouping and categorising nanomaterials and ensuring nanosafety by design
- Highlights
- Antimicrobial efficacy, cytotoxicity, and ion release of mixed metal (Ag, Cu, Zn, Mg) nanoparticle polymer composite implant material
- Silver and carbon nanoparticles toxicity in sea urchin Paracentrotus lividus embryos
- Letter
- Assessing the impact of the physical properties of industrially produced carbon nanotubes on their interaction with human primary macrophages in vitro