Startseite Evaluation of a novel stair-climbing transportation aid for emergency medical services
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluation of a novel stair-climbing transportation aid for emergency medical services

  • Mark Verjans ORCID logo EMAIL logo , Philipp Schleer , Max Kinzius , Philipp Krumholz , Lovis Phlippen , Sergey Drobinsky und Klaus Radermacher
Veröffentlicht/Copyright: 14. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Acute and planned transportations of patients are major tasks for emergency medical services (EMS) and often result in substantial physical strains with a major impact on the workers’ health, because current transportation aids cannot provide sufficient support, especially on stairs. A new stair-climbing and self-balancing approach (SEBARES) has been developed and its usability is evaluated in the context of this paper. Twelve participants operated a prototype in a transportation scenario and user forces, user joint angles and the perceived usability were evaluated. Results show that user forces were within long-term acceptable ergonomic limits for over 90% of the transportation time and a mainly healthy upright posture of the back could be maintained. This resulted in a healthy working posture for 85% of the time, according to the OWAS method, and a good perceived usability. A comparison to the most ergonomic aid according to literature, a caterpillar stair chair, reveals that similar upright postures are assumed, while the operation of SEBARES required only 47% of the forces to operate the caterpillar stair chair. A comparison to a previous field study indicates a reduction of strenuous working postures by a factor of three, which further confirms the ergonomic advantages of this concept.


Corresponding author: Mark Verjans, Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany, E-mail:

Funding source: German federal state of North Rhine-Westphalia

Acknowledgments

The authors gratefully thank the department of orthopedic surgery at the Uniklinik RWTH Aachen for providing the inertial measurement system. This study was conducted in the context of the SEBARES cooperation project between the Chair of Medical Engineering of RWTH Aachen University and the industrial partners SurgiTAIX AG, Herzogenrath, and Stollenwerk and Cie GmbH, Cologne.

  1. Research funding: This project was supported by the European Regional Development Fund and the German federal state of North Rhine-Westphalia.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interest: Authors state no conflict of interest.

  4. Informed consent: Informed consent was obtained from all individuals included in this study.

References

1. Schmiedel, R, Behrendt, H. Leistungen des Rettungsdienstes 2012/2013. Bremen: Fachverlag NW in der Carl Schuenemann Verlag GmbH; 2015.Suche in Google Scholar

2. Dowideit, A. Kosten für Rettungsdienste laufen aus dem Ruder. Welt am Sonntag. February 25, 2018.Suche in Google Scholar

3. Behrendt, H, Runggaldier, K. Ein problemaufriss über den demographischen wandel in der Bundesrepublik Deutschland. Auswirkungen auf die präklinische notfallmedizin. Notfall Rettungsmed 2009;12:45–50. https://doi.org/10.1007/s10049-008-1082-0.Suche in Google Scholar

4. Bleyer, T, Hold, U, Macheleidt, M, Müller-Arnecke, HW, Rademacher, U, Windel, A. Hebe- und Tragehilfen im Rettungsdienst – Zusammenstellung und Betrachtung wesentlicher Schnittstellen. Dortmund: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin; 2004.Suche in Google Scholar

5. zur Mühlen, A, Heese, B, Haupt, S. Arbeits-und Gesundheitsschutz für Beschäftigte im Rettungsdienst. Ergo Med 2005;6:169–77.Suche in Google Scholar

6. Maguire, BJ, Smith, S. Injuries and fatalities among emergency medical technicians and paramedics in the United States. Prehospital Disaster Med 2013;28:376–82. https://doi.org/10.1017/s1049023x13003555.Suche in Google Scholar

7. Studnek, JR, Ferketich, A, Mac Crawford, J. On the job illness and injury resulting in lost work time among a national cohort of emergency medical services professionals. Am J Ind Med 2007;50:921–31. https://doi.org/10.1002/ajim.20516.Suche in Google Scholar

8. Maguire, BJ, Hunting, KL, Guidotti, TL, Smith, GS. Occupational injuries among emergency medical services personnel. Prehospital Emerg Care 2005;9:405–11. https://doi.org/10.1080/10903120500255065.Suche in Google Scholar

9. Hogya, PT, Ellis, L. Evaluation of the injury profile of personnel in a busy urban EMS system. Am J Emerg Med 1990;8:308–11. https://doi.org/10.1016/0735-6757(90)90081-a.Suche in Google Scholar

10. Coenen, P, Kingma, I, Boot, CRL, Bongers, PM, van Dieën, JH. Cumulative mechanical low-back load at work is a determinant of low-back pain. Occup Environ Med 2014;71:332–7. https://doi.org/10.1136/oemed-2013-101862.Suche in Google Scholar

11. Pattani, S, Constantinovici, N, Williams, S. Who retires early from the NHS because of ill health and what does it cost? A national cross sectional study. BMJ 2001;322:208–9. https://doi.org/10.1136/bmj.322.7280.208.Suche in Google Scholar

12. Rodgers, LM. A five-year study comparing early retirements on medical grounds in ambulance personnel with those in other groups of health service staff. Part I: incidences of retirements. Occup Med 1998;48:7–16. https://doi.org/10.1093/occmed/48.1.7.Suche in Google Scholar

13. Sterud, T, Ekeberg, Ø, Hem, E. Health status in the ambulance services: a systematic review. BMC Health Serv Res 2006;6:1–10. https://doi.org/10.1186/1472-6963-6-82.Suche in Google Scholar

14. Sterud, T, Hem, E, Ekeberg, Ø, Lau, B. Health problems and help-seeking in a nationwide sample of operational Norwegian ambulance personnel. BMC Publ Health 2008;8:3. https://doi.org/10.1186/1471-2458-8-3.Suche in Google Scholar

15. Zegelman, A. Bis 60 hält das kaum einer durch. ÄrzteZeitung. September 21, 2015.Suche in Google Scholar

16. Prairie, J, Corbeil, P. Paramedics on the job: dynamic trunk motion assessment at the workplace. Appl Ergon 2014;45:895–903. https://doi.org/10.1016/j.apergo.2013.11.006.Suche in Google Scholar

17. Wang, HE, Weaver, MD, Abo, BN, Kaliappan, R, Fairbanks, RJ. Ambulance stretcher adverse events. Qual Saf Health Care 2009;18:213–16. https://doi.org/10.1136/qshc.2007.024562.Suche in Google Scholar

18. Lavender, SA, Conrad, KM, Reichelt, PA, Johnson, PW, Meyer, FT. Biomechanical analyses of paramedics simulating frequently performed strenuous work tasks. Appl Ergon 2000;31:167–77. https://doi.org/10.1016/s0003-6870(99)00040-x.Suche in Google Scholar

19. Schiefer, C, Hermanns, I, Schuster, D, Brandt, K, Ditchen, D, Göbel, F, et al.. Untersuchung der physischen Belastungen von Rettungskräften beim Patiententransport in Treppenhäusern (IFA Report 3/2019). Berlin: Deutsche Gesetzliche Unfallversicherung e. V. (DGUV); 2019.Suche in Google Scholar

20. Hignett, SM. Musculoskeletal injury risks for ambulance workers. J Paramedic Pract 2015;7:226–7. https://doi.org/10.12968/jpar.2015.7.6.276.Suche in Google Scholar

21. Lad, U, Oomen, NMCW, Callaghan, JP, Fischer, SL. Comparing the biomechanical and psychophysical demands imposed on paramedics when using manual and powered stretchers. Appl Ergon 2018;70:167–74. https://doi.org/10.1016/j.apergo.2018.03.001.Suche in Google Scholar

22. Studnek, JR, Mac Crawford, J, Fernandez, AR. Evaluation of occupational injuries in an urban emergency medical services system before and after implementation of electrically powered stretchers. Appl Ergon 2012;43:198–20. https://doi.org/10.1016/j.apergo.2011.05.001.Suche in Google Scholar

23. Fredericks, TK, Butt, SE, Hovenkamp, A. The impact of gurney design on EMS personnel. Proceedings of XXIst annual international occupational ergonomics and safety conference, Dallas, Texas, USA, 11–12 June. Dallas: International Society for Occupational Ergonomics and Safety (ISOES); 2009:112–117 p.Suche in Google Scholar

24. Fredericks, TK, Butt, SE, Kumar, AR, Amin, SG. Biomechanical analysis of EMS personnel using stair chairs with track systems. Proceedings of 11th annual international conference on industrial engineering – theory, applications and practice, Nagoya, Japan, October 24–27. Nagoya: ICIE; 2006:330–5 p.Suche in Google Scholar

25. Mehta, JP, Lavender, SA, Hedman, GE, Reichelt, PA, Park, S, Conrad, KM. Evaluating the physical demands on firefighters using track-type stair descent devices to evacuate mobility-limited occupants from high-rise buildings. Appl Ergon 2015;46:96–106. https://doi.org/10.1016/j.apergo.2014.07.009.Suche in Google Scholar

26. Fredericks, TK, Choi, SD, Butt, SE, Kumar, AR. Postural analyses of paramedics using stairchairs. Proceedings of XVI annual international occupational ergonomics and safety conference. Toronto: International Society for Occupational Ergonomics and Safety (ISOES); 2002:1–5 p.Suche in Google Scholar

27. Verjans, M, Schütt, A, Schleer, P, Struck, D, Radermacher, K. Postural workloads on paramedics during patient transport. Curr Dir Biomed Eng 2018;4:161–4. https://doi.org/10.1515/cdbme-2018-0040.Suche in Google Scholar

28. Goersch, HG. Fachkräftemangel im Rettungsdienst: wie ernst ist die Situation wirklich? Rettungsdienst 2019;9:22–5.Suche in Google Scholar

29. Brüning, M, Schönewolf, W. Manually guidable freight transport system for urban shipment and delivery. Procedia - Soc Behav Sci 2012;48:2444–53. https://doi.org/10.1016/j.sbspro.2012.06.1215.Suche in Google Scholar

30. Verjans, M, Schleer, P, Griesbach, J, Kinzius, M, Alrawashdeh, W, Radermacher, K. Modelling patient dynamics and controller impact analysis for a novel self-stabilizing patient transport aid. IFAC-PapersOnLine 2019;51:208–13. https://doi.org/10.1016/j.ifacol.2019.01.067.Suche in Google Scholar

31. Phlippen, L, Verjans, M, Schleer, P, Drobinsky, S, Radermacher, K. Impact of an uncooperative passenger on the control of an externally guided self-balancing patient-transport system. 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). New York: IEEE; 2019:5278–82 p.10.1109/EMBC.2019.8856287Suche in Google Scholar

32. Verjans, M, Phlippen, L, Schleer, P, Radermacher, K. SEBARES – design and evaluation of a controller for a novel externally guided self-balancing patient rescue aid. Conf. Proc. IEEE Eng Med Biol Soc 2019;2019:5278–82.10.23919/ECC.2019.8795727Suche in Google Scholar

33. Schleer, P, Kinzius, M, Verjans, M, Kähler, F, Radermacher, K. Development of a stair climbing mechanism for a novel mechatronic transport aid: preliminary results. Curr Dir Biomed Eng 2018;4:283–6. https://doi.org/10.1515/cdbme-2018-0069.Suche in Google Scholar

34. Steinberg, U, Caffier, G, Lieber, F, Behrendt, S. Ziehen und Schieben ohne Schaden. Dortmund: German Federal Institute for Occupational Safety and Health (BAuA); 2008.Suche in Google Scholar

35. Hettinger, T. Gewichtsgrenzen für das höchstzulässige Heben und Tragen von Lasten durch männliche und weibliche sowie jugendliche Arbeitnehmer. Bonn: Bundesminister für Arbeit u. Sozialordnung; 1981.Suche in Google Scholar

36. Gesundheitsberichterstattung des Bundes. Eckzahlen der Gesundhe its personal rechnung. 1–2. [cited 2018]. Available from: http://www.gbe-bund.de.Suche in Google Scholar

37. IFA. Bewertung physischer Belastungen gemäß DGUV. Information 208-033 2015;33:1–10.Suche in Google Scholar

38. Stoffert, G. Analyse und Einstufung von Körperhaltungen bei der Arbeit nach der OWAS-Methode. Z Arbeitswiss 1985;39:31–8.Suche in Google Scholar

39. Karhu, O, Kansi, P, Kuorinka, I. Correcting working postures in industry: a practical method for analysis. Appl Ergon 1977;8:199–201. https://doi.org/10.1016/0003-6870(77)90164-8.Suche in Google Scholar

40. Brandl, C, Mertens, A, Schlick, CM. Effect of sampling interval on the reliability of ergonomic analysis using the Ovako working posture analysing system (OWAS). Int J Ind Ergon 2017;57:68–73. https://doi.org/10.1016/j.ergon.2016.11.013.Suche in Google Scholar

41. Brooke, J. SUS – a quick and dirty usability scale. London: Taylor & Francis; 1996.Suche in Google Scholar

42. Bangor, A, Kortum, P, Miller, J. Determining what individual SUS scores mean: adding an adjective rating scale. J Usability Stud 2009;4:114–23.Suche in Google Scholar

43. Lewis, JR, Sauro, J. The factor structure of the system usability scale. Lect Notes Comput Sci (incl. Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2009;5619:94–103.10.1007/978-3-642-02806-9_12Suche in Google Scholar

Received: 2020-06-19
Accepted: 2020-10-16
Published Online: 2020-12-14
Published in Print: 2021-06-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bmt-2020-0166/html?lang=de
Button zum nach oben scrollen