Startseite On the formulation of the image reconstruction problem in magnetic particle imaging
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the formulation of the image reconstruction problem in magnetic particle imaging

  • Mandy Grüttner EMAIL logo , Tobias Knopp , Jochen Franke , Michael Heidenreich , Jürgen Rahmer , Aleksi Halkola , Christian Kaethner , Jörn Borgert und Thorsten M. Buzug
Veröffentlicht/Copyright: 2. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In magnetic particle imaging (MPI), the spatial distribution of magnetic nanoparticles is determined by applying various static and dynamic magnetic fields. Due to the complex physical behavior of the nanoparticles, it is challenging to determine the MPI system matrix in practice. Since the first publication on MPI in 2005, different methods that rely on measurements or simulations for the determination of the MPI system matrix have been proposed. Some methods restrict the simulation to an idealized model to speed up data reconstruction by exploiting the structure of an idealized MPI system matrix. Recently, a method that processes the measurement data in x-space rather than frequency space has been proposed. In this work, we compare the different approaches for image reconstruction in MPI and show that the x-space and the frequency space reconstruction techniques are equivalent.


Corresponding author: Mandy Grüttner, Institute of Medical Engineering, Universität of Lübeck, Ratzeburger Allee 160, Building 64, Room 112.1, Lübeck 23562, Germany, Phone: +49-451-500-5416, E-mail:

The authors gratefully acknowledge the financial support of the German Federal Ministry of Education and Research (grant numbers 13N11086, 13N11088, and 13N11090) and the European Union and the State Schleswig-Holstein under grant number 122-10-004.

References

[1] Biederer S, Knopp T, Sattel TF, et al. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. J Phys D Appl Phys 2009; 42: 205007.10.1088/0022-3727/42/20/205007Suche in Google Scholar

[2] Chikazumi S, Charap SH. Physics of magnetism. New York: Wiley 1964.Suche in Google Scholar

[3] Erbe M, Knopp T, Sattel TF, Biederer S, Buzug TM. Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging. Med Phys 2011; 38: 5200–5207.10.1118/1.3626481Suche in Google Scholar PubMed

[4] Fenn M, Potts D. Fast summation based on fast trigonometric transforms at nonequispaced nodes. Numer Linear Algebra Appl 2005; 12: 161–169.10.1002/nla.407Suche in Google Scholar

[5] Finas D, Ruhland B, Baumann K, et al. Sentinel lymphnode detection in breast cancer by magnetic particle imaging using superparamagnetic nanoparticles. In: Buzug TM, Borgert J, Knopp T, editors. Magnetic nanoparticles: particle science, imaging technology, and clinical applications. Lübeck: World Scientific 2010: 205–210.10.1142/9789814324687_0029Suche in Google Scholar

[6] Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435: 1214–1217.10.1038/nature03808Suche in Google Scholar PubMed

[7] Gleich B, Weizenecker J, Borgert J. Experimental results on fast 2D-encoded magnetic particle imaging. Phys Med Biol 2008; 53: N81–N84.10.1088/0031-9155/53/6/N01Suche in Google Scholar PubMed

[8] Gleich B, Weizenecker J, Timminger H, et al. Fast MPI demonstrator with enlarged field of view. In: Proc ISMRM Stockholm Mai 2010; 18: 218.Suche in Google Scholar

[9] Goodwill PW, Conolly SM. The x-space formulation of the magnetic particle imaging process: one-dimensional signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imag 2010; 29: 1851–1859.10.1109/TMI.2010.2052284Suche in Google Scholar PubMed

[10] Goodwill PW, Conolly SM. Experimental demonstration of x-space magnetic particle imaging. SPIE 2011; 7965: 79650U.10.1117/12.878659Suche in Google Scholar

[11] Goodwill PW, Conolly SM. Multi-dimensional x-space magnetic particle imaging. IEEE Trans Med Imag 2011; 30: 1581–1590.10.1109/TMI.2011.2125982Suche in Google Scholar PubMed PubMed Central

[12] Goodwill PW, Lu K, Zheng B, Conolly SM. An x-space magnetic particle imaging scanner. Rev Sci Instrum 2012; 83: 033708–033708.10.1063/1.3694534Suche in Google Scholar PubMed PubMed Central

[13] Goodwill PW, Saritas EU, Croft LR, et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 2012; 24: 3870–3877.10.1002/adma.201200221Suche in Google Scholar PubMed

[14] Gräser M, Biederer S, Grüttner M, et al. Determination of a 1D-MPI-system-function using a magnetic particle spectroscope. Biomed Tech 2011; 56(Suppl. 1). Freiburg: DOI 10.1515/BMT.2011.302.Suche in Google Scholar

[15] Grüttner M, Gräser M, Biederer S, et al. 1D-image reconstruction for magnetic particle imaging using a hybrid system function. In: Proc IEEE Nucl Sci Symp Med Im Conf, Valencia 2011: 2545–2548.10.1109/NSSMIC.2011.6152687Suche in Google Scholar

[16] Haegele J, Rahmer J, Gleich B, et al. Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology 2012; 265: 933–938.10.1148/radiol.12120424Suche in Google Scholar PubMed

[17] Halkola A, Buzug TM, Rahmer J, Gleich B, Bontus C. System calibration unit for magnetic particle imaging: focus field based system function. In: Magnetic particle imaging, Springer Proceedings in Physics, Lübeck 2012; 140: 27–31.10.1007/978-3-642-24133-8_5Suche in Google Scholar

[18] Knopp T, Buzug TM. Magnetic particle imaging – an introduction to imaging principles and scanner instrumentation. Berlin: Springer 2012.10.1007/978-3-642-04199-0Suche in Google Scholar

[19] Knopp T, Biederer S, Sattel TF, et al. 2D model-based reconstruction for magnetic particle imaging. Med Phys 2010; 37: 485–491.10.1118/1.3271258Suche in Google Scholar PubMed

[20] Knopp T, Rahmer J, Sattel TF, et al. Weighted iterative reconstruction for magnetic particle imaging. Phys Med Biol 2010; 55: 1577–1589.10.1088/0031-9155/55/6/003Suche in Google Scholar PubMed

[21] Knopp T, Sattel TF, Biederer S, et al. Model-based reconstruction for magnetic particle imaging. IEEE Trans Med Imag 2010; 29: 12–18.10.1109/TMI.2009.2021612Suche in Google Scholar PubMed

[22] Lu K, Goodwill P, Zheng B, Conolly S. The impact of filtering direct-feedthrough on the x-space theory of magnetic particle imaging. SPIE 2011; 7965: 79652I.10.1117/12.878446Suche in Google Scholar

[23] Lu K, Goodwill PW, Saritas EU, Zheng B, Conolly SM. Linearity and shift-invariance for quantitative magnetic particle imaging. IEEE Trans Med Imag 2013; 32: 1565–1575. DOI: 10.1109/TMI.2013.2257177.10.1109/TMI.2013.2257177Suche in Google Scholar PubMed PubMed Central

[24] Rahmer J, Weizenecker J, Gleich B, Borgert J. Signal encoding in magnetic particle imaging. BMC Med Imaging 2009; 9: 1565–1575.10.1186/1471-2342-9-4Suche in Google Scholar PubMed PubMed Central

[25] Rahmer J, Weizenecker J, Gleich B, Borgert J. Analysis of a 3-D system function measured for magnetic particle imaging. IEEE Trans Med Imag 2012; 31: 1289–1299.10.1109/TMI.2012.2188639Suche in Google Scholar PubMed

[26] Sattel TF, Knopp T, Biederer S, et al. Single-sided device for magnetic particle imaging. J Phys D Appl Phys 2009; 42: 1–5.10.1088/0022-3727/42/2/022001Suche in Google Scholar

[27] Schomberg H. Magnetic particle imaging: model and reconstruction. In: Proc IEEE ISBI, Rotterdam 2010: 992–995.10.1109/ISBI.2010.5490155Suche in Google Scholar

[28] Weaver JB, Rauwerdink AM, Hansen EW. Magnetic nanoparticle temperature estimation. Med Phys 2009; 36: 1822–1829.10.1118/1.3106342Suche in Google Scholar PubMed PubMed Central

[29] Weizenecker J, Borgert J, Gleich B. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 2007; 52: 6363–6374.10.1088/0031-9155/52/21/001Suche in Google Scholar PubMed

[30] Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 2009; 54: L1–L10.10.1088/0031-9155/54/5/L01Suche in Google Scholar PubMed

[31] Weizenecker J, Gleich B, Rahmer J, Borgert J. Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles. Phys Med Biol 2012; 57: 7317.10.1088/0031-9155/57/22/7317Suche in Google Scholar PubMed

Received: 2012-11-19
Accepted: 2013-8-30
Published Online: 2013-10-02
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 13.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bmt-2012-0063/html?lang=de
Button zum nach oben scrollen