Therapeutic strategies to fight HIV-1 latency: progress and challenges
-
Sello Lebohang Manoto
, Lebogang Thobakgale
Abstract
The life-long persistence of human immunodeficiency virus type-1 (HIV-1) in latent reservoirs is a major hurdle in the eradication of HIV-1, even though highly active antiretroviral therapy (HAART) can be effective in reducing the plasma HIV-1 RNA to less than 50 copies per mL, which is below the detection limit of most clinical assays. In the latent reservoirs the provirus is integrated in the host genome but does not actively replicate and thus is not inhibited by HAART or recognized by the host immune system. There has been increasing scientific interest and investment into research towards HIV cure due to the challenges and limitation of life long treatment. The various strategies that have been developed aim to activate gene expression in HIV latent cells which might lead to the elimination of the virus by HAART or the immune system. In this review we discuss latency and therapeutic approaches that are being evaluated to eradicate HIV latently infected cells to overcome the burden of life long HAART. In addition, we explore the possibility of delivering HAART in latently infected cells using femtosecond laser pulses, a topic closely studied in our research.
Acknowledgements
The authors thank the Council for Scientific and Industrial Research and the Department of Science and Technology of South Africa for providing support.
References
Abbas W. & Herbein G. 2012. Molecular understanding of HIV-1 latency. Adv. Virol. 2012: Article ID: 574967.10.1155/2012/574967Suche in Google Scholar PubMed PubMed Central
Archin A.M., Sung J.M., Garrido C., Soriano-Sarabia N. & Margolis D.M. 2014. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nature Rev. Microbiol. 12: 750–764.10.1038/nrmicro3352Suche in Google Scholar PubMed PubMed Central
Archin N.M., Liberty A.L., Kashuba A.D., Choudhary S.K., Kuruc J.D., Crooks A.M., Parker D.C., Anderson E.M., Kearney M.F, Strain M.C., Richman D.D., Hudgens M.G., Bosch R.J., Coffin J.M., Eron J.J., Hazuda D.J. & Margolis D.M. 2012. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487: 482–485.10.1038/nature11286Suche in Google Scholar PubMed PubMed Central
Banerjee C., Archin N., Michaels D., Belkina A.C., Denis G.V., Bradner J., Sebastiani P., Margolis D.M. & Montano M. 2012. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J. Leukoc. Biol. 92: 1147–1154.10.1189/jlb.0312165Suche in Google Scholar PubMed PubMed Central
Barouch D.H., Whitney J.B., Moldt B., Klein F., Oliveira T.Y., Liu J., Stephenson K.E., Chang H., Shekhar K., Gupta S., Nkolola J.P., Seaman M.S., Smith K.M, Borducchi E.N., Cabral C., Smith J.Y., Blackmore S., Sanisetty S., Perry J.R., Beck M., Lewis M.G., Rinaldi W., Chakraborty A.K., Poignard P., Nussenzweig M.C. & Burton D.R. 2013. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503: 224–228.10.1038/nature12744Suche in Google Scholar PubMed PubMed Central
Barre-Sinoussi F., Cherman J.C., Rey F., Nugeyre M.T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vezinet-Brun F., Rouzioux C., Rozenbaum W. & Montagnier L. 1983. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868–871.10.1126/science.6189183Suche in Google Scholar PubMed
Battistini A. & Sgarbanti M. 2014. HIV-1 latency: an update of molecular mechanisms and therapeutic strategies. Viruses 6: 1715–1758.10.3390/v6041715Suche in Google Scholar PubMed PubMed Central
Baumgart J., Bintig W., Ngezahayo A., Lubatschowski H. & Heisterkamp A. 2010. Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection. Opt. Express 18: 2219–2229.10.1364/OE.18.002219Suche in Google Scholar PubMed
Bernhard W., Barreto K., Saunders A., Dahabieh M.S., Johnson P. & Sadowski I. 2011. The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response. FEBS Lett. 585: 3549–3554.10.1016/j.febslet.2011.10.018Suche in Google Scholar PubMed
Blankson J.N., Persaud D. & Siliciano R.F. 2002. The challenge of viral reservoirs in HIV-1 infection. Ann. Rev. Med. 53: 557–593.10.1146/annurev.med.53.082901.104024Suche in Google Scholar PubMed
Boulais E., Lachaine R., Hatef A. & Meunier M. 2013. Plasmonics for pulsed-laser cell nanosurgery: fundamentals and applications. J. Photochem. Photobiol. C Photochem. Rev. 17: 26–49.10.1016/j.jphotochemrev.2013.06.001Suche in Google Scholar
Bour S., Geleziunas R. & Wainberg M.A. 1995. The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection. Microbiol. Rev. 59: 63–93.10.1128/mr.59.1.63-93.1995Suche in Google Scholar PubMed PubMed Central
Choi B.S., Lee H.S., Oh Y.T, Hyun Y.L., Ro S., Kim S.S. & Hong K.J. 2010. Novel histone deacetylase inhibitors CG05 and CG06 effectively reactivate latently infected HIV-1. AIDS 24: 609–611.10.1097/QAD.0b013e328333bfa1Suche in Google Scholar PubMed
Chomont N., El-Far M., Ancuta P., Trautman L., Procopio F.A, Yassine-Diab B., Boucher G., Boulassel M., Ghattas G., Brenchley J.M., Schacker T.W., Hill B.J, Douek D.C., Routy J.P., Haddad E.K. & Sekaly R. 2009. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nature Med. 15: 893–900.10.1038/nm.1972Suche in Google Scholar PubMed PubMed Central
Churchill M.J., Wesselingh S.L., Cowley D., Pardo C.A., McArthur J.C., Brew B.J. & Gorry P.R. 2009. Extensive astrocyte infection is prominent in human immunodeficiency virus associated dementia. Ann. Neurol. 66: 253–258.10.1002/ana.21697Suche in Google Scholar PubMed
Ciuffi A., Mohammadi P., Golumbeanu M., di Iulio J. & Telenti A. 2015. Bioinformatics and HIV latency. Curr. HIV/AIDS Rep. 12: 97–106.10.1007/s11904-014-0240-xSuche in Google Scholar PubMed PubMed Central
Coiras M., Lopez-Huertas M.R., Perez-Olmeda M. & Alcami J. 2009. Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nature Rev. Microbiol. 7: 798–812.10.1038/nrmicro2223Suche in Google Scholar PubMed
Contreras X., Schweneker M., Chen C.S., McCune J.M., Deeks S.G, Martin J. & Peterlin B.M. 2009. Suberoylanilde hydroxamic acid reactivates HIV from latently infected cells. J. Biol. Chem. 284: 6782–6789.10.1074/jbc.M807898200Suche in Google Scholar PubMed PubMed Central
Contreras X., Barboric M., Lenasi T. & Peterlin B.M. 2007. HMBA releases P-TEFb from HEXIM1 and 7SK snRNA via PI3K/Akt and activates HIV transcription. PLoS Pathog. 3: 1459–1469.10.1371/journal.ppat.0030146Suche in Google Scholar PubMed PubMed Central
Dampier W., Nonnemacher M.R., Sullivan N.T., Jacobson J.M. & Wigdahl B. 2014. HIV excision utilizing CRISPRr/cas9 technology: attacking the proviral quasispecies in reservoirs to achieve a cure. MOJ Immunol. 1: pii00022.10.15406/moji.2014.01.00022Suche in Google Scholar PubMed PubMed Central
Deeks S.G., Autran B., Berkhout B., Benkirane M., Cairns S., Chomont N., Chun T.W., Churchill M., Di Mascio M., Katlama C., Lafeuillade A., Landay A., Lederman M., Lewin S.R., Maldarelli F., Margolis D., Markowitz M., Martinez-Picado J., Mullins J.I., Mellors J., Moreno S., O’Doherty U., Palmer S., Penicaud M.C., Peterlin M., Poli G., Routy J.P., Rouzioux C., Silvestri G., Stevenson M., Telenti A., Van Lint, C., Verdin E., Woolfrey A., Zaia J. & Barré-Sinoussi F. 2012. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol. 12: 607–614.10.1038/nri3262Suche in Google Scholar PubMed PubMed Central
Deleage C., Moreau M., Rioux-Leclercq N., Ruffault A., Jegou B. & Dejucq-Rainsford N. 2011. Human immunodeficiency virus infects human seminal vesicles in vitro and in vivo. Am. J Pathol. 179: 2397–2408.10.1016/j.ajpath.2011.08.005Suche in Google Scholar PubMed PubMed Central
Deng K., Pertea M., Rongvaux A., Wang L., Durand C.M., Ghiaur G., Lai J., McHugh H.L., Hao H., Zhang H., Margolick J.B., Gurer C., Murphy A.J., Valenzuela D.M., Yancopoulos G.D., Deeks S.G., Strowig T., Kumar P., Siliciano J.D., Salzberg S.L., Flavell R.A., Shan L. & Siliciano R.F. 2015. Broad CTL response is required to clear latent HIV-1 due todominance of escape mutations. Nature 517: 381–385.10.1038/nature14053Suche in Google Scholar PubMed PubMed Central
Dykhuizen E.C., Carmody L.C., Tolliday N., Crabtree G.R., Palmer M.A. 2012. Screening for inhibitors of an essential chromatin remodeler in mouse embryonic stem cells by monitoring transcriptional regulation. J. Biomol. Screen. 17: 1221–1230.10.1177/1087057112455060Suche in Google Scholar PubMed PubMed Central
Fernandez G. & Zeichner S.L. 2010. Cell line dependent variability in HIV activation employing DNMT inhibitors. Virol. J. 7: 266.10.1186/1743-422X-7-266Suche in Google Scholar PubMed PubMed Central
Forthal D., Hope T.J. & Alter G. 2013. New paradigms for functional HIV-specific nonneutralizing antibodies. Curr. Opin. HIV/AIDS 8: 393–401.10.1097/COH.0b013e328363d486Suche in Google Scholar PubMed PubMed Central
Friedman J., Cho W.K., Chu C.K., Keedy K.S, Archin N.M., Margolis D.M. & Karn J. 2011. Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J. Virol. 85: 9078–9089.10.1128/JVI.00836-11Suche in Google Scholar PubMed PubMed Central
Fry T.J. & Mackall C.L. 2002. Interleukin-7: from bench to clinic. Blood 99: 3892–3904.10.1182/blood.V99.11.3892Suche in Google Scholar PubMed
Grah E.H., Pace M.J., Peterson B.A, Lynch L.J, Chukwulebe S.B., Mexas A.M., Shaheen F., Martin J.N., Deeks S.G., Connors M., Migueles S.A. & O’Doherty U. 2013. Gag positive reservoir cells are susceptible to HIV specific cytotoxic T lymphocyte mediated clearance in vitro and can be detected in vivo. Plos One 8: e71879.10.1371/journal.pone.0071879Suche in Google Scholar PubMed PubMed Central
Halper-Stromberg A., Lu C.L., Klein F., Horwitz J.A., Bournazos S., Nogueira L., Eisenreich T.R, Liu C., Gazumyan A., Schaefer U., Furze R.C., Seaman M.S., Prinjha R., Tarakhovs A., Ravetch J.V. & Nussenzweig M.C. 2014. Broadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. Cell 158: 989–999.10.1016/j.cell.2014.07.043Suche in Google Scholar PubMed PubMed Central
Hersperger A.R., Migueles S.A., Bett M.R. & Connors M. 2011. Qualitative features of the HIV-specific CD8+ T-cell response associated with immunologic control. Curr. Opin. HIV AIDS 6: 169–173.10.1097/COH.0b013e3283454c39Suche in Google Scholar PubMed
Horwitz J.A., Halper-Stromberga A., Mouqueta H., Gitlina A.D., Tretiakovac A., Eisenreicha T.R., Malbecd M., Gravemanne S., Billerbeckf E., Dornerf M., Büninge H., Schwartzd O., Knopse E., Kaisere R., Seamang M.S., Wilsonc J.M., Ricef C.M., Plossf A., Bjorkmani J., Kleina F. & Nussenzweig M.C. 2013. HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice. Proc. Natl. Acad. Sci. USA 110: 16538–16543.10.1073/pnas.1315295110Suche in Google Scholar
Huber K., Doyon G., Plaks J., Fyne E., Mellors J.W., & Sluis-Cremer N. 2011. Inhibitors of histone deacetylases: correlation between isoform specificity and reactivation of HIV type 1 (HIV-1) from latently infected cells. J Biol. Chem. 286: 22211–22218.10.1074/jbc.M110.180224Suche in Google Scholar PubMed
Imai K., Togami H. & Okamoto T. 2010. Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol. Chem. 285: 16538–16545.10.1074/jbc.M110.103531Suche in Google Scholar PubMed
Jones R.B., O’Connor R., Mueller S., Foley M., Szeto G.L., Karel D., Lichterfeld M., Kovacs C., Ostrowski M.A., Trocha A., Irvine D.J. & Walker B.D. 2014. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes. PLoS Pathog. 10: e1004287.10.1371/journal.ppat.1004287Suche in Google Scholar PubMed
Junt T. & Barchet W. 2015. Translating nucleic acid sensing pathways into therapies. Nat. Rev. Immunol. 15: 529–544.10.1038/nri3875Suche in Google Scholar PubMed
Katlama C., Deeks S.G., Autran B., Martinez-Picado J., van Lunzen J., Rouzioux C., Miller M., Vella S., Schmitz J.E., Ahlers J., Richman D.D. & Sekaly R.P. 2013. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet 381: 2109–2117.10.1016/S0140-6736(13)60104-XSuche in Google Scholar PubMed
Kashanchi F., Melpolder J.C., Epstein J.S. & Sadaie M.R. 1997. Rapid and sensitive detection of cell associated HIV-1 in latently infected cell lines and in patient cells using sodium n butyrate induction and RT-PCR. J. Med. Virol. 52: 179–189.10.1002/(SICI)1096-9071(199706)52:2<179::AID-JMV11>3.0.CO;2-GSuche in Google Scholar PubMed
Kauder S.E., Bosque A., Lindqvist A., Planells V. & Verdin E. 2009. Epigenetic regulation of HIV-1 latency by cytosine methylation. PloS Pathog. 5: e1000495.10.1371/journal.ppat.1000495Suche in Google Scholar PubMed
Kulkosky J., Sullivan J., Xu Y., Sounder E., Hamer D.H. & Pomerantz R.J. 2004. Expression of latent HAART persistent HIV type 1 induced by novel cellular activating agents. AIDS Res. Hum. Retroviruses 20: 497–505.10.1089/088922204323087741Suche in Google Scholar PubMed
Kumar A., Abbas W. & Herbein G. 2014. HIV-1 latency in monocytes/macrophages. Viruses 6: 1837–1860.10.3390/v6041837Suche in Google Scholar PubMed PubMed Central
Lam S., Sung J., Cruz C., Castillo-Caro P., Ngo M., Garrido C., Kuruc J., Archin N., Rooney C., Margolis D. & Bollard C. 2015. Broadly-specific cytotoxic T cells targeting multiple HIV antigens are expanded from HIV+ patients: implications for immunotherapy. Mol. Ther. 23: 387–395.10.1038/mt.2014.207Suche in Google Scholar PubMed PubMed Central
Lassen K., Han Y., Zhou Y., Siliciano J. & Siliciano R.F. 2004. The multifactorial nature of HIV-1 latency. Trends Mol. Med. 10: 525–531.10.1016/j.molmed.2004.09.006Suche in Google Scholar PubMed
Lu H.K., Gray L.R., Wightman F., Ellenberg P., Khoury G., Cheng W.J., Mota T.M., Wesselingh S., Gorry P.R., Cameron P. U., Churchill M.J., Lewin S.R. 2014. Ex vivo response to histone deacetylase (HDAC) inhibitors of the HIV long terminal repeat (LTR) derived from HIV-infected patients on antiretroviral therapy. PLoS One 9: e113341.10.1371/journal.pone.0113341Suche in Google Scholar PubMed PubMed Central
Lu P., Qu X., Shen Y., Jiang Z., Wang P., Zeng H., Ji H., Deng J., Yang X., Li X., Lu H & Zhu H. 1996. The BET inhibitor OTX015 reactivates latent HIV-1 through p-TEFb. Sci. Rep. 6: 24100.10.1038/srep24100Suche in Google Scholar PubMed PubMed Central
Lusic M. & Giacca M. 2015. Regulation of HIV-1 latency by chromatin structure and nuclear architecture. J. Mol. Biol. 457: 688–694.10.1016/j.jmb.2014.07.022Suche in Google Scholar PubMed
Malabi R., Manoto S., Ombinda-Lemboumba S., Maaza M. & Mthunzi-Kufa P. 2017. In vitro photo-translocation of antiretroviral drug delivery into TZMbl cell. Proc. SPIE 10062: 1006204.10.1117/12.2252238Suche in Google Scholar
Marcello A. 2006. Latency: the hidden HIV-1 challenge. Retrovirology 3: 7.10.1186/1742-4690-3-7Suche in Google Scholar PubMed PubMed Central
Matalon S., Palmer B.E., Nold M.F., Furlan A., Kassu A., Fossati G., Mascagni P. & Dinarello C.A. 2010. The histone deacetylase inhibitor ITF2357 decreases surface CXCR4 and CCR5 expression on CD4+ T cells and monocytes and is superior to valproic acid for latent HIV-1 expression in vitro. J. Acquir. Immune Defic. Syndr. 54: 1–9.10.1097/QAI.0b013e3181d3dca3Suche in Google Scholar PubMed PubMed Central
Mbonye U. & Karn J. 2014. Transcriptional control of HIV latency: cellular signalling pathways, epigenetics, happenstance and the hope for a cure. Virology 454-455: 328–339.10.1016/j.virol.2014.02.008Suche in Google Scholar PubMed PubMed Central
Mehla R., Bivalkar-Mehla S., Zhang R., Handy I., Albrecht H., Giri S., Nagarkatti P., Nagarkatti M. & Chauhan A. 2010. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signalling but inhibits acute infection in a receptor independent manner. PLoS One 5: e11160.10.1371/journal.pone.0011160Suche in Google Scholar PubMed PubMed Central
Mthunzi P., Dholakia K. & Gunn-Moore F. 2010. Phototransfection of mammalian cells using femtosecond laser pulses: optimization and applicability to stem cell differentiation. J. Biomed. Optics 15: 1–7.10.1117/1.3430733Suche in Google Scholar PubMed
Mthunzi P., He K., Ngcobo S. & Warner J.W. 2014. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates. Proc. SPIE 8944: 89440K.10.1117/12.2040157Suche in Google Scholar
Mussolino C., Morbitzer R., Lütge F., Dannemann N., Lahaye T. & Cathomen T. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 39: 9283–9293.10.1093/nar/gkr597Suche in Google Scholar PubMed PubMed Central
Narlikar G.J., Sundaramoorthy R. & Owen-Hughes T. 2013. Mechanisms and functions of ATP dependent chromatin remodelling enzymes. Cell 154: 490–503.10.1016/j.cell.2013.07.011Suche in Google Scholar PubMed PubMed Central
Pegu A., Asokan M., Wu L., Wang K., Hataye J., Casazza J.P., Guo X., Shi W., Georgiev I., Zhou T., Chen X., O’Dell S., Todd J., Kwong P.D., Rao S.S., Yang Z., Koup R.A., Mascola J.R. & Nabel G.J. 2015. Activation and lysis of human CD4 cells latently infected with HIV-1. Nature Commun. 6: 1–9.10.1038/ncomms9447Suche in Google Scholar PubMed PubMed Central
Phillips A.N, Neaton, J. & Ludgren, J.D. 2008. The role of HIV in serious diseases other than AIDS. AIDS 22: 2409–2418.10.1097/QAD.0b013e3283174636Suche in Google Scholar PubMed PubMed Central
Praveen B.B., Stevenson D.J., Antkowiak M., Dholakia K. & Gunn-Moore F.J. 2011. Enhancement and optimization of plasmid expression in femtosecond optical transfection. J. Biophotonics 4: 229–235.10.1002/jbio.201000105Suche in Google Scholar PubMed
Reuse S., Calao M., Kabeya K., Guiguen A., Gatot J.S., Quivy V., Vanhulle C., Lamine A., Vaira D., Demonte D., Martinelli V., Veithen E., Cherrier T., Avettand V., Poutrel S., Piette J., de Launoit Y., Moutschen M., Burny A., Rouzioux C., De Wit S., Herbein G., Rohr O., Collette Y., Lambotte O., Clumeck N. & Van Lint C. 2009. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS One 4: e6093.10.1371/journal.pone.0006093Suche in Google Scholar PubMed PubMed Central
Saksena N.K., Wang B., Zhou L., Soedjono M., Ho Y.S. & Conceicao V. 2010. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV AIDS 2: 103–122.10.2147/HIV.S6882Suche in Google Scholar PubMed PubMed Central
Saleh S., Solomon A., Wightman F. & Xhilaga M. 2007. Cameron PU, Lewin SR. CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 110: 4161–4164.10.1182/blood-2007-06-097907Suche in Google Scholar PubMed
Schiffer J.T., Aubert M., Weber N.D, Mintzer E., Stone D. & Jerome K.R. 2012. Targeted DNA mutagenesis for the cure of chronic viral infections. J. Virol. 86: 8920–8936.10.1128/JVI.00052-12Suche in Google Scholar PubMed PubMed Central
Shan L. & Siliciano R.F. 2013. From reactivation of latent HIV-1 to elimination of the latent reservoir: the presence of multiple barriers to viral eradication. BioEssays 35: 544–552.10.1002/bies.201200170Suche in Google Scholar PubMed PubMed Central
Shang H., Ding J., Yu S., Wu T., Zhang Q. & Liang F. 2015. Progress and challenges in the use of latent HIV-1 reactivating agents. Acta Pharmacol. Sin. 36: 908–916.10.1038/aps.2015.22Suche in Google Scholar PubMed PubMed Central
Shirakawa K., Chavez L., Hakre S., Calvanese V. & Verdin E. 2013. Activation of latent HIV by histone deactylases inhibitors. Trends Micobiol. 21: 277–285.10.1016/j.tim.2013.02.005Suche in Google Scholar PubMed PubMed Central
Sierra S., Kupfer B. & Kaiser R. 2005. Basics of the virology of HIV-1 and its replication. J. Clin. Virology 34: 233–244.10.1016/j.jcv.2005.09.004Suche in Google Scholar PubMed
Siliciano J.D., Kajdas J., Finzi D., Quinn T.C., Chadwick K., Margolick J.B, Kovacs C, Gange S.J. & Siliciano R.F. 2003. Long term follow up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9: 727–728.10.1038/nm880Suche in Google Scholar PubMed
Siliciano J.M. & Siliciano R.F. 2015. The remarkable stability of the latent reservoir for HIV-1 in resting memory CD4+ T cells. J. Infect. Dis. 212: 1345–1347.10.1093/infdis/jiv219Suche in Google Scholar PubMed
Siliciano R.F. & Greene W.C. 2011. HIV latency. Cold Spring Harb. Perspect. Med. 1: 1–19.10.1101/cshperspect.a007096Suche in Google Scholar PubMed PubMed Central
Stoszko M., De Crignis E., Rokx C., Khalid M.M., Lungu C., Palstra R., Kan T.W., Boucher C., Verbon A., Dykhuizen E.C. & Mahmoudi T. 2016. Small molecule inhibitors of BAF; a promising family of compounds in HIV-1 latency reversal. EBioMedicine 3: 108–121.10.1016/j.ebiom.2015.11.047Suche in Google Scholar PubMed PubMed Central
Tebas P., Stein D., Tang W.W., Frank I., Wang S.Q., Lee G., Spratt S.K., Surosky R.T, Giedlin M.A., Nichol G., Holmes M.C., Gregory P.D., Ando D.G., Kalos M., Collman R.G., Binder-Scholl G., Plesa G., Hwang W.T., Levine B.L. & June C.H. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J Med. 370: 901–910.10.1056/NEJMoa1300662Suche in Google Scholar PubMed PubMed Central
Terasaki M., Miyake K. & McNeil P.L. 1997. Large plasma membrane disruptions are rapidly resealed by Ca2+ dependent vesicle-vesicle fusion events. J. Cell Biol. 139: 63–74.10.1083/jcb.139.1.63Suche in Google Scholar PubMed PubMed Central
Togo T. 2006. Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site. J. Cell Sci. 119: 2780–2786.10.1242/jcs.03006Suche in Google Scholar PubMed
Tsai A., Irrinki A., Kaur J., Cihlar T., Kukolj G., Sloan D.D. & Murry J.P. 2017. Toll-like receptor 7 agonist GS-9620 induces HIV expression and HIV-specific immunity in cells from HIV-infected individuals on suppressive antiretroviral therapy. J. Virol. 91: 1–19.10.1128/JVI.02166-16Suche in Google Scholar PubMed PubMed Central
Turner L.S., Tsygankov A.Y. & Henderson E.E. 2006. StpC-based gene therapy targeting latent reservoirs of HIV-1. Antiviral Res. 72: 233–241.10.1016/j.antiviral.2006.06.010Suche in Google Scholar PubMed
Van Lint C., Emiliani S. & Verdin E. Trascriptional activation and chromatin remodelling of the HIV-1 promoter in response to histone acetylation. EMBO J. 15: 1112–1120.10.1002/j.1460-2075.1996.tb00449.xSuche in Google Scholar
Verdin E., Paras P. & Van Lint C. Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J. 12: 3249–3259.10.1002/j.1460-2075.1993.tb05994.xSuche in Google Scholar PubMed PubMed Central
Vlach J. & Pitha P.M. 1993. Hexamethylene bisacetamide activates the human immunodeficiency virus type 1 provirus by an NF-kappa B-independent mechanism. J. Gen. Virol. 74: 2401–2408.10.1099/0022-1317-74-11-2401Suche in Google Scholar PubMed
Vogel A., Noack J., Nahen K., Theisen D., Busch S., Parlitz U., Hammer D.X., Noojin G.D., Rockwell B.A. & Birngruber R. 1999. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B: Lasers Optics 68: 271–280.10.1007/s003400050617Suche in Google Scholar
Waleed M., Hwang S.U., Kim J.D., Shabbir I., Shin S.M. & Lee Y.G. 2013. Single-cell optoporation and transfection using femtosecond laser and optical tweezers. Biomed. Opt. Express 4: 1533–1547.10.1364/BOE.4.001533Suche in Google Scholar PubMed PubMed Central
Warrilow D., Gardner J., Darnell G.A., Suhrbier A. & Harrich D. 2006. HIV type 1 inhibition by protein kinase C modulatory compounds. AIDS Res. Hum. Retroviruses 22: 854–864.10.1089/aid.2006.22.854Suche in Google Scholar PubMed
Wei D.G., Chiang V., Fyne E., Balakrishnan M., Barnes T., Graupe M., Hesselgesser J., Irrinki A., Murry J.P., Stepan G., Stray K.M., Tsai A., Yu H., Spindler J., Kearney M., Spina C.A., McMahon D., Lalezari J., Sloan D., Mellors J., Geleziunas R. & Cihlar T. 2014. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog. 10: e1004071.10.1371/journal.ppat.1004071Suche in Google Scholar PubMed PubMed Central
Williams S.A., Chen L.F., Kwon H., Fernard D., Bisgrove D., Verdin E. & Greene W.C. 2004. Prostratin antagonizes HIV latency by activating NF-κB. J Biol. Chem. 279: 42008–420017.10.1074/jbc.M402124200Suche in Google Scholar PubMed
Williams S.A. & Greene W.C. 2007. Regulation of HIV-1 latency by T cell activation. Cytokine 39: 63–74.10.1016/j.cyto.2007.05.017Suche in Google Scholar PubMed PubMed Central
Xing S., Bullen C.K., Shroff N.S., Shan L., Yang H.C., Manucci J.L., Bhat S., Zhang H., Margolick J.B., Quinn T.C., Margolis D.M., Siliciano J.D. & Siliciano R.F. 2011. Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J. Virol. 85: 6060–6064.10.1128/JVI.02033-10Suche in Google Scholar PubMed PubMed Central
Xing S. & Siliciano R.F. 2013. Targeting HIV latency: pharmacologic strategies toward eradication. Drug Discov. Today 18: 541–551.10.1016/j.drudis.2012.12.008Suche in Google Scholar PubMed PubMed Central
Yin H., Zhang Y., Zhou X. & Zhu H. 2011. Histone deacetylase inhibitor oxamflatin increase HIV-1 transcription by inducing histone modification in latently infected cells. Mol. Biol. Rep. 38: 5071–5078.10.1007/s11033-010-0653-6Suche in Google Scholar PubMed
Zhang Z., Fu J., Zhao Q., He Y., Jin L, Zhang H., Yao J., Zhang L. & Wang F.S. 2006. Differential restoration of myeloid and plasmacytoid dendritic cells in HIV-1 infected children after treatment with highly active antiretroviral therapy. J. Immunol. 176: 5644–5651.10.4049/jimmunol.176.9.5644Suche in Google Scholar PubMed
Zysset B., Fujimoto J.G., Puliafito C.A. Birngruber R & Thomos F.D. 1989. Picosecond optical breakdown: tissue effects and reduction of collateral damage. Lasers Surg. Med. 9: 193–204.10.1002/lsm.1900090302Suche in Google Scholar PubMed
Abbreviations
- AIDS
acquired immune deficiency syndrome
- AP1
activator protein 1
- BAF
BRG-Brahma associated factors
- BAFi
BAF inhibitors
- bNAbs
broadly neutralizing antibodies
- BRD
bromodomain
- BET
bromodomain and extraterminal domain
- CDK9
cyclin dependent kinase 9
- CNS
central nervous system
- COUP
chicken ovalbumin upstream promoter
- CRISPR
clustered regularly interspaced short palindromic repeats
- CTLs
cytotoxic T lymphocytes
- CycT1
cyclin T1
- DNMTI
DNA methyltransferase inhibitors
- HAART
highly active antiretroviral therapy
- HDACi
histone deacetylase inhibitors
- HDACs
histone deacetylases
- HEXIM-1
HMBA-induced protein 1
- HMBA
hexamethylene bisacetamide
- HMTI
histone methyltransferase inhibitors
- HMTS
histone methyltransferases
- HSV
Herpes Simplex Virus
- I?B-α
inhibitor of kappa B alpha
- IL
interleukin
- Jak
Janus kinase
- LTR
long terminal repeat
- MBD2
methyl-CpG binding domain protein 2
- NF1
nuclear factor 1
- NFAT
nuclear factor of activated T cells
- NFκB
nuclear factor kappa B
- PD1
programmed cell death protein 1
- PKC
protein kinase C
- p-TEFb
positive transcription elongation factor b
- siRNA
small interfering RNA
- SP1
specificity protein 1
- STAT
signal transducer and activator of transcription
- TCF-1α
transcription factor 1 alpha
- TK
thymidine kinase
- TLRs
toll-like receptors
- UBP-1
upstream binding protein 1
- USF
upstream stimulatory factor
© 2017 Institute of Molecular Biology, Slovak Academy of Sciences
Artikel in diesem Heft
- Cellular and Molecular Biology
- Therapeutic strategies to fight HIV-1 latency: progress and challenges
- Zoology
- Detection of schistosomiasis applicable for primary health care facilities in endemic regions of Africa
- Botany
- Genetic and morphological diversity in Geranium dissectum (Sec. Dissecta, Geraniaceae) populations
- Botany
- Optical properties of halophyte leaves are affected by the presence of salt on the leaf surface
- Botany
- The crosstalk between ABA, nitric oxide, hydrogen peroxide, and calcium in stomatal closing of Arabidopsis thaliana
- Botany
- Optimization of the pollen-tube pathway method of plant transformation using the Yellow Cameleon 3.6 calcium sensor in Solanum lycopersicum
- Cellular and Molecular Biology
- Differential effects of plant growth regulators on physiology, steviol glycosides content, and antioxidant capacity in micropropagated tissues of Stevia rebaudiana
- Zoology
- Characteristics of matrix of the invasive freshwater Ectoprocta species Pectinatella magnifica
- Zoology
- Relative growth and reproductive cycle of the hermaphroditic Cardites antiquatus (Mollusca: Bivalvia) collected from the Bizerte channel (northern Tunisia)
- Zoology
- Tegolophus glycyglabri sp. n. (Trombidiformes: Eriophyidae), a new species from Iran
- Zoology
- Karyotype characteristics and polymorphism peculiarities of Chironomus luridus (Diptera: Chironomidae) from Central and Northwest Caucasus
- Zoology
- Reptile surveys reveal high species richness in areas recovering from mining activity in the Brazilian Cerrado
- Zoology
- The porcupine as “Little Thumbling”: The role of Hystrix cristata in the spread of Helianthus tuberosus
- Cellular and Molecular Biology
- Distribution of telocytes in the corpus and cervix of human uterus: an immunohistochemical study
- Zoology
- First record of mermithid larva (Nematoda: Mermithidae) in Anopheles maculipennis complex (Diptera: Culicidae) imago in Central-Europe
Artikel in diesem Heft
- Cellular and Molecular Biology
- Therapeutic strategies to fight HIV-1 latency: progress and challenges
- Zoology
- Detection of schistosomiasis applicable for primary health care facilities in endemic regions of Africa
- Botany
- Genetic and morphological diversity in Geranium dissectum (Sec. Dissecta, Geraniaceae) populations
- Botany
- Optical properties of halophyte leaves are affected by the presence of salt on the leaf surface
- Botany
- The crosstalk between ABA, nitric oxide, hydrogen peroxide, and calcium in stomatal closing of Arabidopsis thaliana
- Botany
- Optimization of the pollen-tube pathway method of plant transformation using the Yellow Cameleon 3.6 calcium sensor in Solanum lycopersicum
- Cellular and Molecular Biology
- Differential effects of plant growth regulators on physiology, steviol glycosides content, and antioxidant capacity in micropropagated tissues of Stevia rebaudiana
- Zoology
- Characteristics of matrix of the invasive freshwater Ectoprocta species Pectinatella magnifica
- Zoology
- Relative growth and reproductive cycle of the hermaphroditic Cardites antiquatus (Mollusca: Bivalvia) collected from the Bizerte channel (northern Tunisia)
- Zoology
- Tegolophus glycyglabri sp. n. (Trombidiformes: Eriophyidae), a new species from Iran
- Zoology
- Karyotype characteristics and polymorphism peculiarities of Chironomus luridus (Diptera: Chironomidae) from Central and Northwest Caucasus
- Zoology
- Reptile surveys reveal high species richness in areas recovering from mining activity in the Brazilian Cerrado
- Zoology
- The porcupine as “Little Thumbling”: The role of Hystrix cristata in the spread of Helianthus tuberosus
- Cellular and Molecular Biology
- Distribution of telocytes in the corpus and cervix of human uterus: an immunohistochemical study
- Zoology
- First record of mermithid larva (Nematoda: Mermithidae) in Anopheles maculipennis complex (Diptera: Culicidae) imago in Central-Europe