Abstract
Over the last few years, researchers have been studying telocytes, recently described interstitial cells, voraciously. This morphological study focused on the immunohistochemical identification of telocytes and the study of their topographical relations in the wall of the human uterine body and cervix. This study attempted to find the most specific and therefore, the most suitable monoclonal antibody for the study of telocytes via the immunohistochemical methods. Tissue specimens from human uteruses were stained with eight different primary antibodies, to detect the expression of c-kit (CD117), CD34 antigen, vimentin, α-smooth muscle actin, progesterone receptor, desmin, estrogen receptor and S 100 protein. The presence of telocytes was studied in four different histological regions of the uterus: the endometrium and myometrium of the corpus, endocervical mucosa and exocervical mucosa. This study shows that c-kit is the most suitable marker for identification of telocytes in human uterine body and cervix. C-kit positive telocytes within the endometrium, myometrium, as well as the mucosa of the endocervix and exocervix exhibited an assorted variety of shapes from spindle-shaped, triangular to star-shaped. The greatest abundance of c-kit positive telocytes is found within the myometrium. The connective tissue of endocervical mucosa also contains a considerable number of these cells, while the lowest count of c-kit positive telocytes is found within the endometrium and exocervical mucosa.
Acknowledgements
Authors thank Mrs. Gabriela Fujerikova for technical assistance during histological preparation.
Conflict of interest: The authors declare no conflict of interest.
Ethical approval: This study was approved by the local Ethical Committee of the General Hospital in Komárno, Slovakia. The patients provided written informed consent prior to participating in the study.
References
Abd-Elhafeez H.H. & Soliman S.A. 2017. New description of telocyte sheaths in the bovine uterine tube: an immunohistochemical and scanning microscopic study. Cells Tissues Organs 203: 295–315.10.1159/000452243Search in Google Scholar PubMed
Aleksandrovych V., Sajewicz M., Walocha J.A. & Gil K. 2016. Tubal telocytes: factor infertility reason? Folia Med. Cracov. 56: 17–23.Search in Google Scholar
Aleksandrovych V., Walocha J.A. & Gil K. 2016. Telocytes in female reproductive system (human and animal). J. Cell. Mol. Med. 20: 994–1000.10.1111/jcmm.12843Search in Google Scholar PubMed PubMed Central
Allen W.E. 2009. Terminologia anatomica: international anatomical terminology and terminologia histologica: international terms for human cytology and histology. J. Anat. 215: 221.10.1111/j.1469-7580.2009.1093_1.xSearch in Google Scholar
Allix S., Reyes-Gomez E., Aubin-Houzelstein G., Noël D., Tiret L., Panthier J.J. & Bernex F. 2008. Uterine contractions depend on KIT-positive interstitial cells in the mouse: genetic and pharmacological evidence. Biol. Reprod. 79: 510–517.10.1095/biolreprod.107.066373Search in Google Scholar PubMed
Bei Y., Wang F., Yang C. & Xiao J. 2015. Telocytes in regenerative medicine. J. Cell. Mol. Med. 19: 1441–1454.10.1111/jcmm.12594Search in Google Scholar PubMed PubMed Central
Bei Y., Zhou Q., Fu S., Lv D., Chen P., Chen Y., Wang F. & Xiao J. 2015. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One 10: e0115991.10.1371/journal.pone.0115991Search in Google Scholar PubMed PubMed Central
Campeanu R.A., Radu B.M., Cretoiu S.M., Banciu D.D., Banciu A., Cretoiu D. & Popescu L.M. 2014. Near-infrared lowlevel laser stimulation of telocytes from human myometrium. Lasers Med. Sci. 29: 1867–1874.10.1007/s10103-014-1589-1Search in Google Scholar PubMed PubMed Central
Ciontea S.M., Radu E., Regalia T., Ceafalan L., Cretoiu D., Gherghiceanu M., Braga R.I., Malincenco M., Zagrean L., Hinescu M.E. & Popescu L.M. 2005. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J. Cell. Mol. Med. 9: 407–420.10.1111/j.1582-4934.2005.tb00366.xSearch in Google Scholar PubMed PubMed Central
Cretoiu D., Ciontea S.M., Popescu L.M., Ceafalan L. & Ardeleanu C. 2006. Interstitial Cajal-like cells (ICLC) as steroid hormone sensors in human myometrium: immunocytochemical approach. J. Cell. Mol. Med. 10: 789–795.10.1111/j.1582-4934.2006.tb00438.xSearch in Google Scholar PubMed PubMed Central
Cretoiu D. & Cretoiu S.M. 2016. Telocytes in the reproductive organs: current understanding and future challenges. Semin. Cell Dev. Biol. 55: 40–49.10.1016/j.semcdb.2016.03.018Search in Google Scholar PubMed
Cretoiu S.M. 2016. Immunohistochemistry of telocytes in the uterus and fallopian tubes, pp. 335–357. In: Wang X. & Cretoiu D. (eds), Telocytes. Springer Singapore, Singapore.10.1007/978-981-10-1061-3_22Search in Google Scholar PubMed
Cretoiu S.M., Cretoiu D., Marin A., Radu B.M. & Popescu L.M. 2013. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction 145: 357–370.10.1530/REP-12-0369Search in Google Scholar PubMed PubMed Central
Cretoiu S.M., Cretoiu D., Suciu L. & Popescu L.M. 2009. Interstitial Cajal-like cells of human Fallopian tube express estrogen and progesterone receptors. J. Mol. Histol. 40: 387–394.10.1007/s10735-009-9252-zSearch in Google Scholar PubMed
Cretoiu S.M., Radu B.M., Banciu A., Banciu D.D., Cretoiu D., Ceafalan L.C. & Popescu L.M. 2015. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of Ttype calcium channels. Histochem. Cell Biol. 143: 83–94.10.1007/s00418-014-1268-0Search in Google Scholar PubMed PubMed Central
Díaz-Flores L., Gutiérrez R., García M.P., Sáez F.J., Díaz-Flores L. Jr., Valladares F. & Madrid J.F. 2014. CD34+ stromal cells/fibroblasts/fibrocytes/telocytes as a tissue reserve and a principal source of mesenchymal cells. Location, morphology, function and role in pathology. Histol. Histopathol. 831–870.Search in Google Scholar
Duquette R.A., Shmygol A., Vaillant C., Mobasheri A., Pope M., Burdyga T. & Wray S. 2005. Vimentin-positive, c-KITnegative interstitial cells in human and rat uterus: a role in pacemaking? Biol. Reprod. 72: 276–283.10.1095/biolreprod.104.033506Search in Google Scholar PubMed
Federative International Committee on Anatomical Terminology. 2008. Terminologia histologica: international terms for human cytology and histology. Wolters Kluwer, Philadelphia.Search in Google Scholar
Gevaert T., Vos R., Aa F., Joniau S., Oord J., Roskams T. & Ridder D. 2012. Identification of telocytes in the upper lamina propria of the human urinary tract. J. Cell. Mol. Med. 16: 2085–2093.10.1111/j.1582-4934.2011.01504.xSearch in Google Scholar PubMed PubMed Central
Hatta K., Huang M.L., Weisel R.D. & Li R.K. 2012. Culture of rat endometrial telocytes. J. Cell. Mol. Med. 16: 1392–1396.10.1111/j.1582-4934.2012.01583.xSearch in Google Scholar PubMed PubMed Central
Hutchings G., Deprest J., Nilius B., Roskams T. & De Ridder D. 2006. The effect of imatinib mesylate on the contractility of isolated rabbit myometrial strips. Gynecol. Obstet. Invest. 62: 79–83.10.1159/000092530Search in Google Scholar PubMed
Hutchings G., Williams O., Cretoiu D. & Ciontea S.M. 2009. Myometrial interstitial cells and the coordination of myometrial contractility. J. Cell. Mol. Med. 13: 4268–4282.10.1111/j.1582-4934.2009.00894.xSearch in Google Scholar PubMed PubMed Central
Liu T., Wang S., Li Q., Huang Y., Chen C. & Zheng J. 2016. Telocytes as potential targets in a cyclophosphamide-induced animal model of premature ovarian failure. Mol. Med. Rep. 14: 2415–2422.10.3892/mmr.2016.5540Search in Google Scholar PubMed PubMed Central
Manole C.G. & Cretoiu D. 2015. In Memoriam: Professor Laurentiu M. Popescu (1944-2015). Clin. Transl. Med. 4: 29.10.1186/s40169-015-0070-5Search in Google Scholar PubMed PubMed Central
Marenholz I., Heizmann C.W. & Fritz G. 2004. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem. Biophys. Res. Commun. 322: 1111–1122.10.1016/j.bbrc.2004.07.096Search in Google Scholar PubMed
Myong NH. 2012. Loss of E-cadherin and acquisition of vimentin in epithelial-mesenchymal transition are noble indicators of uterine cervix cancer progression. Korean J. Pathol. 46: 341-348.10.4132/KoreanJPathol.2012.46.4.341Search in Google Scholar PubMed PubMed Central
Nizyaeva N.V., Sukhacheva T.V., Kulikova G.V., Nagovitsyna M.N., Poltavtseva R.A., Kan N.E., Tyutyunnik V.L., Pavlovich S.V., Serov R.A. & Shchyogolev A.I. 2017. Ultrastructural characteristics of placental telocytes. Bull. Exp. Biol. Med. 162: 693–698.10.1007/s10517-017-3690-5Search in Google Scholar PubMed
Popescu L.M. & Faussone-Pellegrini M.-S. 2010. TELOCYTES – a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J. Cell. Mol. Med. 14: 729–740.10.1111/j.1582-4934.2010.01059.xSearch in Google Scholar PubMed PubMed Central
Popescu L.M., Vidulescu C., Curici A., Caravia L., Simionescu A.A., Ciontea S.M. & Simion S. 2006. Imatinib inhibits spontaneous rhythmic contractions of human uterus and intestine. Eur. J. Pharmacol. 546: 177–181.10.1016/j.ejphar.2006.06.068Search in Google Scholar PubMed
Roatesi I., Radu B.M., Cretoiu D. & Cretoiu S.M. 2015. Uterine telocytes: a review of current knowledge. Biol. Reprod. 93: 10.10.1095/biolreprod.114.125906Search in Google Scholar PubMed
Rusu M.C., Hostiuc S., Vrapciu A.D., Mogoantă L., Mănoiu V.S. & Grigoriu F. 2017. Subsets of telocytes: myocardial telocytes. Ann. Anat. 209: 37–44.10.1016/j.aanat.2016.09.006Search in Google Scholar PubMed
Satelli A. & Li S. 2011. Vimentin as a potential molecular target in cancer therapy or vimentin, an overview and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. 68: 3033-3046.10.1007/s00018-011-0735-1Search in Google Scholar PubMed PubMed Central
Shafik A., El-Sibai O., Shafik I. & Shafik A.A. 2005. Immunohistochemical identification of the pacemaker cajal cells in the normal human vagina. Arch. Gynecol. Obstet. 272: 13–16.10.1007/s00404-005-0725-3Search in Google Scholar PubMed
Smythies J. & Edelstein L. 2014. Telocytes, exosomes, gap junctions and the cytoskeleton: the makings of a primitive nervous system? Front. Cell. Neurosci. 7: 278.10.3389/fncel.2013.00278Search in Google Scholar PubMed PubMed Central
Suciu L., Popescu L.M., Gherghiceanu M., Regalia T., Nicolescu M.I., Hinescu M.E. & Faussone-Pellegrini M.-S. 2010. Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 192: 325–339.10.1159/000319467Search in Google Scholar PubMed
Urban L., Miko M., Kajanova M., Bozikova S., Mrazova H. & Varga I. 2016. Telocytes (interstitial Cajal-like cells) in human Fallopian tubes. Bratisl. Lek. Listy 117: 263–267.10.4149/BLL_2016_051Search in Google Scholar PubMed
Varga I., Urban L., Kajanová M. & Polák Š. 2016. Functional histology and possible clinical significance of recently discovered telocytes inside the female reproductive system. Arch. Gynecol. Obstet. 294: 417–422.10.1007/s00404-016-4106-xSearch in Google Scholar PubMed
Velez-delValle C., Marsch-Moreno M., Castro-Muñozledo F., Galván-Mendoza I.J. & Kuri-HarcuchW. 2016. Epithelial cell migration requires the interaction between the vimentin and keratin intermediate filaments. Sci. Rep. 6: 24389.10.1038/srep24389Search in Google Scholar PubMed PubMed Central
Zheng Y., Bai C. & Wang X. 2012. Telocyte morphologies and potential roles in diseases. J. Cell. Physiol. 227: 2311–2317.10.1002/jcp.23022Search in Google Scholar PubMed
Zhou Q., Wei L., Zhong C., Fu S., Bei Y., Huică R.I., Wang F. & Xiao J. 2015. Cardiac telocytes are double positive for CD34/PDGFR-α. J. Cell. Mol. Med. 19: 2036–2042.10.1111/jcmm.12615Search in Google Scholar PubMed PubMed Central
© 2017 Institute of Molecular Biology, Slovak Academy of Sciences
Articles in the same Issue
- Cellular and Molecular Biology
- Therapeutic strategies to fight HIV-1 latency: progress and challenges
- Zoology
- Detection of schistosomiasis applicable for primary health care facilities in endemic regions of Africa
- Botany
- Genetic and morphological diversity in Geranium dissectum (Sec. Dissecta, Geraniaceae) populations
- Botany
- Optical properties of halophyte leaves are affected by the presence of salt on the leaf surface
- Botany
- The crosstalk between ABA, nitric oxide, hydrogen peroxide, and calcium in stomatal closing of Arabidopsis thaliana
- Botany
- Optimization of the pollen-tube pathway method of plant transformation using the Yellow Cameleon 3.6 calcium sensor in Solanum lycopersicum
- Cellular and Molecular Biology
- Differential effects of plant growth regulators on physiology, steviol glycosides content, and antioxidant capacity in micropropagated tissues of Stevia rebaudiana
- Zoology
- Characteristics of matrix of the invasive freshwater Ectoprocta species Pectinatella magnifica
- Zoology
- Relative growth and reproductive cycle of the hermaphroditic Cardites antiquatus (Mollusca: Bivalvia) collected from the Bizerte channel (northern Tunisia)
- Zoology
- Tegolophus glycyglabri sp. n. (Trombidiformes: Eriophyidae), a new species from Iran
- Zoology
- Karyotype characteristics and polymorphism peculiarities of Chironomus luridus (Diptera: Chironomidae) from Central and Northwest Caucasus
- Zoology
- Reptile surveys reveal high species richness in areas recovering from mining activity in the Brazilian Cerrado
- Zoology
- The porcupine as “Little Thumbling”: The role of Hystrix cristata in the spread of Helianthus tuberosus
- Cellular and Molecular Biology
- Distribution of telocytes in the corpus and cervix of human uterus: an immunohistochemical study
- Zoology
- First record of mermithid larva (Nematoda: Mermithidae) in Anopheles maculipennis complex (Diptera: Culicidae) imago in Central-Europe
Articles in the same Issue
- Cellular and Molecular Biology
- Therapeutic strategies to fight HIV-1 latency: progress and challenges
- Zoology
- Detection of schistosomiasis applicable for primary health care facilities in endemic regions of Africa
- Botany
- Genetic and morphological diversity in Geranium dissectum (Sec. Dissecta, Geraniaceae) populations
- Botany
- Optical properties of halophyte leaves are affected by the presence of salt on the leaf surface
- Botany
- The crosstalk between ABA, nitric oxide, hydrogen peroxide, and calcium in stomatal closing of Arabidopsis thaliana
- Botany
- Optimization of the pollen-tube pathway method of plant transformation using the Yellow Cameleon 3.6 calcium sensor in Solanum lycopersicum
- Cellular and Molecular Biology
- Differential effects of plant growth regulators on physiology, steviol glycosides content, and antioxidant capacity in micropropagated tissues of Stevia rebaudiana
- Zoology
- Characteristics of matrix of the invasive freshwater Ectoprocta species Pectinatella magnifica
- Zoology
- Relative growth and reproductive cycle of the hermaphroditic Cardites antiquatus (Mollusca: Bivalvia) collected from the Bizerte channel (northern Tunisia)
- Zoology
- Tegolophus glycyglabri sp. n. (Trombidiformes: Eriophyidae), a new species from Iran
- Zoology
- Karyotype characteristics and polymorphism peculiarities of Chironomus luridus (Diptera: Chironomidae) from Central and Northwest Caucasus
- Zoology
- Reptile surveys reveal high species richness in areas recovering from mining activity in the Brazilian Cerrado
- Zoology
- The porcupine as “Little Thumbling”: The role of Hystrix cristata in the spread of Helianthus tuberosus
- Cellular and Molecular Biology
- Distribution of telocytes in the corpus and cervix of human uterus: an immunohistochemical study
- Zoology
- First record of mermithid larva (Nematoda: Mermithidae) in Anopheles maculipennis complex (Diptera: Culicidae) imago in Central-Europe