The role of melatonin and carnosine in prevention of oxidative intestinal injury induced by gamma irradiation in rats
Abstract
Exposure of biological materials to ionizing irradiation causes accumulation of reactive oxygen species. The current study aimed to investigate whether melatonin or carnosine could provide protection against irradiation-induced small intestinal damage. Forty Wistar albino rats were divided into five groups. Melatonin, carnosine, and combination of carnosine and melatonin were injected into rats in the third, fourth, and fifth groups, respectively. Rats were injected three times every 48 hours. All groups, excluding the control group, were exposed to a dose of 8 Gray whole body gamma irradiation one hour after the second injection. It was determined that irradiation caused degenerative changes in the intestinal tissues, reduced PCNA (proliferating cell nuclear antigen) -positive cell number, and increased caspase-3- and TNF-α (tumour necrosis factor alpha) -positive crypt cell numbers. Results obtained from antioxidant-treated groups were similar to those from the control group. Lipid peroxidation and protein carbonyl levels as well as superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, myeloperoxidase, lactate dehydrogenase and xanthine oxidase activities were increased. However, catalase, sodium potassium ATPase activities and glutathione levels were decreased in the irradiated group of animals. Treatment with antioxidants reversed these changes. It is suggested that exogenous melatonin, carnosine, and melatonin+carnosine combination exhibit protective effects against irradiation-induced small intestinal damage.
Acknowledgements
This study was supported by The Scientific Research Projects Coordination Unit of Istanbul University (Project No: 18248; BYP: 54474; UDP: 57652).
References
Abou-Seif M.A.M., El-Naggar M.M., El-Far M., Ramadan M. & Salah N.2003. Amelioration ofradiation-induced oxidative stress and biochemical alteration by SOD model compounds in pre-treated gamma-irradiated rats. Clin. Chim. Acta 337(1-2): 23–33. 10.1016/S0009-8981(03)00192-XSuche in Google Scholar
Akpolat M. 2007. Gamma radyasyonun ileum kadehsi hücrelerinde oluşturduğu hasarlara karşıcurcumin ve c vitamininin koruyucu etkilerinin ışık ve elektron mikroskobik düzeylerde incelenmesi [Examining the protective effects of curcumin and vitamin c against gamma radiation-induced ileum goblet cell damage at light and electron microscopic levels]. PhD Thesis, Trakya University, Edirne, Turkey, 88 pp.Suche in Google Scholar
Aydin A.F, Kucukgergin C., Ozdemirler-Erata G., Kocak-Toker N. & Uysal M. 2010a. The effect of carnosine treatment on prooxidant-antioxidant balance in liver, heart and brain tissues of male aged rats. Biogerontology 11 (1): 103–109. 10.1007/s10522-009-9232-4Suche in Google Scholar
Aydin A.F., Kusku-Kiraz Z., Dogru-Abbasoglu S., Gulluoglu M., Uysal M. & Kocak-Toker N. 2010b. Effect of carnosine against thioacetamide-induced liver cirrhosis in rat. Peptides 31 (1): 67–71. 10.1016/j.peptides.2009.11.028.Suche in Google Scholar
Babizhayev M.A., Seguin M.C., Gueyne J., Evstigneeva R.P., Ageyeva E.A. & Zheltukhina G.A. 1994. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities. Biochem. J. 304 (Pt.2): 509–516. 10.1042/bj3040509Suche in Google Scholar PubMed
Brzezinski A. 1997. Melatonin in humans. N. Engl. J. Med. 336 (3): 186–195. 10.1056/NEJM199701163360306Suche in Google Scholar PubMed
Carney J.M. & Carney A.M. 1994. Role of protein oxidation in aging and in age-associated neurodegenerative diseases. Life Sci. 55 (25-26): 2097–2103. 10.1016/0024-3205(94)00390-4Suche in Google Scholar PubMed
Carroll M.P., Zera R.T., Roberts J.C., Schlafmann S.E., Feeney D.A., Johnston G.R., West M.A. & Bubrick M.P. 1995. Efficacy of radioprotective agents in preventing small and large bowel radiation injury. Dis. Colon Rectum 38 (7): 716–722. 10.1007/BF02048028Suche in Google Scholar PubMed
Chan W.K.M., Decker E.A., Lee J.B. & Butterfield L.D. 1994. EPR spin-trapping studies of the hydroxy radical scavenging activity of carnosine and related dipeptides. J. Agric. Food Chem. 42 (7): 1407–1410. 10.1021/jf00043a003Suche in Google Scholar
Chavan S., Sava L., Saxena V., Pillai S., Sontakke A. & Ingole D. 2005. Reduced glutathione: importance of specimen collection. Indian J. Clin. Biochem. 20 (1): 150–152. 10.1007/BF02893062.Suche in Google Scholar PubMed PubMed Central
Corte E.D. & Stirpe F. 1968. Regulation of xanthine oxidase in rat liver: modifications of the enzyme activity of rat liver supernatant on storage at 20 degrees. Biochem. J. 108 (2): 349–351. 10.1042/bj1080349Suche in Google Scholar PubMed PubMed Central
Fernandez M., Medina A., Santos F., Carbajo E., Rodriguez J., Alvarez J. & Cobo A. 2001. Exacerbated inflammatory response induced by insulin-like growth factor-I treatment in rats with ischemic acute renal failure. J. Am. Soc. Nephrol. 12 (9): 1900–1907. PMID: 1151878310.1681/ASN.V1291900Suche in Google Scholar PubMed
Fouad A.A., Qureshi H.A., Yacoubi M.T. & Al-Melhim W.N. 2009. Protective role of carnosine in mice with cadmium-induced acute hepatotoxicity. Food Chem. Toxicol. 47 (11): 2863–2870. 10.1016/j.fct.2009.09.009.Suche in Google Scholar PubMed
Fujii T., Takaoka M., Muraoka T., Kurata H., Tsuruoka N., Ono H., Kiso Y., Tanaka T. & Matsumura Y. 2005. Dietary supplementation of L-carnosine prevents ischemia/reperfusion induced renal injury in rats. Biol. Pharm. Bull. 28 (2): 361–363. 10.1248/bpb.28.361Suche in Google Scholar PubMed
Giris M., Erbil Y., Oztezcan S., Olgac V., Barbaros U., Deveci U., Kirgiz B., Uysal M. & Toker G.A. 2006. The effect of heme oxygenase-1 induction by glutamine on radiation-induced intestinal damage: the effect of heme oygenase-1 on radiation enteritis. Am. J. Surg. 191 (4): 503–509. 10.1016/j.amjsurg.2005.11.004Suche in Google Scholar
Habig W.H. & Jacoby W.B. 1981. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 77: 398–405. 10.1016/S0076-6879(81)77053-8Suche in Google Scholar PubMed
Haeri S.A., Rajabi H., Fazelipour S. & Hosseinimehr S.J. 2014. Carnosine mitigates apoptosis and protects testicular seminiferous tubules from gamma-radiation-induced injury in mice. Andrologia 46 (9): 1041–1046. 10.1111/and.12193Suche in Google Scholar PubMed
Hussein M.R., Abu-Dief E.E., Kamel E., El-Ghait A.T.A., Abdulwahed S.R. & Ahmad M.H. 2008. Melatonin and roentgen irradiation-induced acute radiation enteritis in Albino rats: An animal model. Cell Biol. Int. 32 (11): 1353–1361. 10.1016/j.cellbi.2008.08.001Suche in Google Scholar PubMed
Javois L.C. (ed.). 1999. Immunocytochemical Methods and Protocols. 2nd ed. Series: Methods in Molecular Biology, Vol. 115. Humana Pres, Totowa, New Jersey, 465 pp. ISBN-10: 0-89603-570-0, ISBN-13: 978-0-89603-570-6Suche in Google Scholar
Kanter M., Tarladaçalışır Y.T., Akpolat M. & Mercantepe T. 2008. Gamma radyasyona bağlıoluşan jejunum mukoza hasarina karşı curcumin ve amifostinin koruyucu etkilerinin incelenmesi [Protective effect of curcumin and amifostine on gamma radiation-induced jejunal mucosal damage in rats]. Tıp Araştırmaları Dergisi 6 (3): 128–135.Suche in Google Scholar
Karabulut-Bulan O., Bayrak B.B., Arda-Pirincci P., Sarikaya-Unal G., Us H. & Yanardag R. 2015. Role of exogenous melatonin on cell proliferation and oxidant/antioxidant system in aluminum-induced renal toxicity. Biol. Trace Elem. Res. 168 (1): 141–149. 10.1007/s12011-015-0320-9Suche in Google Scholar PubMed
Karbownik M. & Reiter R.J. 2000. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc. Soc. Exp. Biol. Med. 225 (1): 9–22. PMID: 1099819410.1046/j.1525-1373.2000.22502.xSuche in Google Scholar PubMed
Klucinski P., Wójcik A., Grabowska-Bochenek R., Gmiński J., Mazur B., Hrycek A., Cieślik P. & Matirosian G. 2008. Erythrocyte antioxidant parameters in workers occupationally exposed to low levels of ionizing radiation. Ann. Agric. Environ. Med. 15 (1): 9–12. PMID: 18581973Suche in Google Scholar PubMed
Kunwar A., Bag P.P., Chattopadhyay S., Jain V.K. & Priyadarsini K.I. 2011. Anti-apoptotic, anti-inflammatory, and immunomodulatory activities of 3,3-diselenodipropionic acid in mice exposed to whole body γ-radiation. Arch. Toxicol. 85 (11): 1395–1405. 10.1007/s00204-011-0687-0Suche in Google Scholar PubMed
Lebrun F., Francois A., Vergnet M., Lebaron-Jacobs L., Gourmelon P. & Griffiths N.M. 1998. Ionizing radiation stimulates muscarinic regulation of rat intestinal mucosal function. Am. J. Physiol. 275 (6 Pt.1): G1333–G1340. PMID: 984377010.1152/ajpgi.1998.275.6.G1333Suche in Google Scholar
Ledwozyw A., Michalak J., Stepień A. & Kadziołka A. 1986. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin. Chim. Acta 155 (3): 275–283. 10.1016/0009-8981(86)90247-0Suche in Google Scholar PubMed
Lentsch A.B., Atsushi K. & Yoshidome H. 2000. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology 32 (2): 169–173. 10.1053/jhep.2000.9323Suche in Google Scholar PubMed
Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S. & Stadtman E.R. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186: 464–478. 10.1016/0076-6879(90)86141-HSuche in Google Scholar PubMed
Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1): 265–275. PMID: 1490771310.1016/S0021-9258(19)52451-6Suche in Google Scholar PubMed
Mohseni M., Mihandoost E., Shirazi A., Sepehrizadeh Z., Bazzaz J.T. & Ghazikhansari M. 2012. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat. Res. 738-739: 19–27. 10.1016/j.mrfmmm.2012.08.006Suche in Google Scholar PubMed
Monobe M., Hino M., Sumi M., Uzawa A., Hirayama R. & Ando K. 2005. Protective effect of melatonin on γ-ray induced intestinal damage. Int. J. Radiat. Biol. 81 (11): 855–860. 10.1080/09553000600554804Suche in Google Scholar PubMed
Mylroie A.A., Collins H., Umbles C. & Kyle J. 1986. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol. Appl. Pharmacol. 82 (3): 512–520. 10.1016/0041-008X(86)90286-3Suche in Google Scholar PubMed
Neoman E., Zahran A.M. & Kamal A.M. 2002. Vitamin E and selenium administration as a modulator of antioxidant defence system: Biochemical assesment and modification. Biol. Trace Elem. Res. 86 (1): 55–64. 10.1385/BTER:86:1:55Suche in Google Scholar
Noori S. & Mahboob T. 2010. Antioxidant effect of carnosine pretreatment on cisplatin-induced renal oxidative stress in rats. Indian J. Clin. Biochem. 25 (1): 86–91. 10.1007/s12291-010-0018-xSuche in Google Scholar PubMed
Onal C., Kayaselcuk F., Topkan E., Yavuz M., Bacanli D. & Yavuz A. 2011. Protective effects of melatonin and octreotide against radiation-induced intestinal injury. Dig. Dis. Sci. 56 (2): 359–367. 10.1007/s10620-010-1322-2Suche in Google Scholar PubMed
Ozalpan A.2001. Temel Radyobiyoloji [Basic Radiobiology]. 1st ed. Halic University Publication, Istanbul, 353 pp. ISBN: 9758574000, 9789758574001Suche in Google Scholar
Paglia D.E. & Valentine W.N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70 (1): 158–169. PMID: 6066618Suche in Google Scholar PubMed
Potten C.S., Merritt A., Hickman J., Hall P. & Faranda A. 1994. Characterization of radiation-induced apoptosis in the small intestine and its biological implications. Int. J. Radiat. Biol. 65 (1): 71–78. 10.1080/09553009414550101Suche in Google Scholar PubMed
Pratheeshkumar P. & Kuttan G. 2011. Protective role of Vernonia cinerea L. against gamma-radiation-induced immunosuppression and oxidative stress in mice. Hum. Exp. Toxicol. 30 (8): 1022–1038. 10.1177/0960327110385959Suche in Google Scholar PubMed
Reiter R.J., Tan D.X., Mayo J.C., Sainz R.M., Leon J. & Czarnocki Z. 2003. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim. Pol. 50 (4): 1129–1146. 0350041129Suche in Google Scholar PubMed
Ridderstap A.S. & Bonting S.L. 1969. Na+-K+ activated ATPase and exocrine pancreatic secretion in vitro. Am. J. Physiol. 217 (6): 1721–1727.10.1152/ajplegacy.1969.217.6.1721Suche in Google Scholar PubMed
Saada H.N., Rezk R.G. & Eltahawy N.A. 2010. Lycopene protects the structure of the small intestine against gamma-radiation-induced oxidative stress. Phytother. Res. 24 (Suppl. 2): S204–S208. 10.1002/ptr.3091Suche in Google Scholar
Saclarides T.J. 1997. Radiation injuries of the gastrointestinal tract. Surg. Clin. N. Am. 77 (1): 261–268. 10.1016/S0039-6109(05)70544-2Suche in Google Scholar
Sainza R.M., Mayo J.C., Rodriguez C., Tan D.X., Lopez-Burilloa S. & Reiter R.J. 2003. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell. Mol. Life Sci. 60 (7): 1407–1426. 10.1007/s00018-003-2319-1Suche in Google Scholar PubMed
Samarth R.M. & Kumar A. 2003. Mentha piperita (Linn.) leaf extract provides protection against radiation induced chromosomal damage in bone marrow of mice. Indian J. Exp. Biol. 41 (3): 229–237. PMID: 15267153Suche in Google Scholar PubMed
Schulze-Osthoff K. 2008. Apoptosis, cytotoxicity and cell proliferation, pp. 2–15. In: Rode H.J., Eisel D. & Frost I. (eds), Roche Applied Science: Apoptosis, Cell Death and Cell proliferation, 4th edn, Roche Diagnostics GmbH, Mannheim 186 pp.Suche in Google Scholar
Sener G., Jahovic N., Tosun O., Atasoy B.M. & Yegen B.C. 2003. Melatonin ameliorates ionizing radiation-induced oxidative organ damage in rats. Life Sci. 74 (5): 563–572. 10.1016/j.lfs.2003.05.011Suche in Google Scholar PubMed
Sert C. & Çelik M.S. 1996. Radyasyondan koruyucu ajanlar [Radioprotective agents]. Türkiye Klinikleri J. Med. Sci. 16 (4): 292–298.Suche in Google Scholar
Sheen-Chen S., Ho H., Chen W. & Eng H. 2003. Obstructive jaundice alters proliferating cell nuclear antigen expression in rat small intestine. World J. Surg. 27 (10): 1161–1164. 10.1007/s00268-003-6992-xSuche in Google Scholar PubMed
Somosy Z., Horvath M., Telbisz A., Rez G. & Palfia Z. 2002. Morphological aspects of ionizing radiation response of small intestine. Micron 33 (2): 167–178. 10.1016/S0968-4328(01)00013-0Suche in Google Scholar PubMed
Srivastava M., Chandra D. & Kale R.K. 2002. Modulation of radiation-induced changes in the xanthine oxidorecustase system in the livers of mice by its inhibitors. Radiat. Res. 157 (3): 290–297. PMID: 1183909110.1667/0033-7587(2002)157[0290:MORICI]2.0.CO;2Suche in Google Scholar PubMed
Take G., Erdogan D., Helvacioglu F., Göktas G., Ozbey G., Uluoglu C., Yücel B., Guney Y., Hicsonmez A. & Ozkan S. 2009. Effect of melatonin and time of administration on irradiation-induced damage to rat testes, effects of melatonin on irradiated testes. Braz. J. Med. Biol. Res. 42 (7): 621–628. PMID: 1957864110.1590/S0100-879X2009000700006Suche in Google Scholar PubMed
Tanaka R.A., Ramos F.M.M., Almeida S.M., Vizioli M.R. & Bóscolo F.N. 2005. Evaluation of radioprotecive effect of carnosine (β-Alanyl-1-Histidine) on the wound healing in rats. J. Appl. Oral Sci. 13 (3): 253–258. 10.1590/S1678-77572005000300010Suche in Google Scholar
Wei H. & Frenkel K. 1993. Relationship of oxidative events and DNA oxidation in SENCAR mice to in vivo promoting activity of phorbol ester-type tumor promoter. Carcinogenesis 14 (6): 1195–1120. 10.1093/carcin/14.6.1195Suche in Google Scholar PubMed
Wendel A. 1981. Glutathione peroxidase. Methods Enzymol. 77: 325–333. 10.1016/S0076-6879(81)77046-0Suche in Google Scholar PubMed
Wroblewski F. 1957. Clinical significance serum enzyme alterations associated with myocardial infarction. Am. Hearth J. 54 (2): 219–224. 10.1016/0002-8703(57)90149-7Suche in Google Scholar
Yan S.L., Wu S.T., Yin M.C., Chen H.T. & Chen H.C. 2009. Protective effects from carnosine and histidineon acetaminophen-induced liver injury. J. Food Sci. 74 (8): 259–265. 10.1111/j.1750-3841.2009.01330.xSuche in Google Scholar
Yazıcı C. & Köse K. 2004. Melatonin: Karanlığın antioksidan gücü [Melatonin: The antioxidant power of darkness]. Erciyes Üniversitesi Sağlık Bilimleri Dergisi / Erciyes Univ. J. Health Sci. 13 (2): 56–65.Suche in Google Scholar
© 2017 Institute of Zoology, Slovak Academy of Sciences
Artikel in diesem Heft
- Cellular and Molecular Biology
- Two nuclei inside a single cardiac muscle cell. More questions than answers about the binucleation of cardiomyocytes
- Cellular and Molecular Biology
- Purification and characterization of α-L-arabinofuranosidases from Geobacillus stearothermophilus strain 12
- Botany
- Impact of vegetation on flow in a lowland stream during the growing season
- Zoology
- Soil moisture distribution mapping in topsoil and its effect on maize yield
- Botany
- Influence of beech and spruce sub-montane forests on snow cover in Poľana Biosphere Reserve
- Botany
- Seedling emergence through soil surface seals under laboratory conditions: effect of mechanical impedance and seal moisture
- Botany
- Overexpression of Arabidopsis ICR1 gene affects vegetative growth and anthesis
- Zoology
- Experimental evidence of the successful invader Orconectes limosus outcompeting the native Astacus leptodactylus in acquiring shelter and food
- Zoology
- Temporary deleterious mass mutations relate to originations of cockroach families
- Zoology
- Dynamics of the bird communities in two fragments of Atlantic Forest in São Paulo, Brazil
- Zoology
- Morpho-metric analysis of the insular and mainland Rattus in Tunisia
- Zoology
- The role of melatonin and carnosine in prevention of oxidative intestinal injury induced by gamma irradiation in rats
- Cellular and Molecular Biology
- Terbufos sulfone aggravates kidney damage in STZ-induced diabetic rats
- Cellular and Molecular Biology
- The in vitro effect of poly (I:C) on cell morphology of a metastatic pharyngeal cell line
- Zoology
- Another climate change induced infiltration? The northernmost record of thermophilous spore-feeding Allothrips pillichellus (Thysanoptera: Phlaeothripidae: Idolothripinae)
- Zoology
- Relict chironomid communities surviving in the coldest High Tatra Mountain lakes confirmed by a palaeolimnological survey
Artikel in diesem Heft
- Cellular and Molecular Biology
- Two nuclei inside a single cardiac muscle cell. More questions than answers about the binucleation of cardiomyocytes
- Cellular and Molecular Biology
- Purification and characterization of α-L-arabinofuranosidases from Geobacillus stearothermophilus strain 12
- Botany
- Impact of vegetation on flow in a lowland stream during the growing season
- Zoology
- Soil moisture distribution mapping in topsoil and its effect on maize yield
- Botany
- Influence of beech and spruce sub-montane forests on snow cover in Poľana Biosphere Reserve
- Botany
- Seedling emergence through soil surface seals under laboratory conditions: effect of mechanical impedance and seal moisture
- Botany
- Overexpression of Arabidopsis ICR1 gene affects vegetative growth and anthesis
- Zoology
- Experimental evidence of the successful invader Orconectes limosus outcompeting the native Astacus leptodactylus in acquiring shelter and food
- Zoology
- Temporary deleterious mass mutations relate to originations of cockroach families
- Zoology
- Dynamics of the bird communities in two fragments of Atlantic Forest in São Paulo, Brazil
- Zoology
- Morpho-metric analysis of the insular and mainland Rattus in Tunisia
- Zoology
- The role of melatonin and carnosine in prevention of oxidative intestinal injury induced by gamma irradiation in rats
- Cellular and Molecular Biology
- Terbufos sulfone aggravates kidney damage in STZ-induced diabetic rats
- Cellular and Molecular Biology
- The in vitro effect of poly (I:C) on cell morphology of a metastatic pharyngeal cell line
- Zoology
- Another climate change induced infiltration? The northernmost record of thermophilous spore-feeding Allothrips pillichellus (Thysanoptera: Phlaeothripidae: Idolothripinae)
- Zoology
- Relict chironomid communities surviving in the coldest High Tatra Mountain lakes confirmed by a palaeolimnological survey