Abstract
Heritably transferred genome mutations extending phenotypic variability together with natural selection (alternatively with genetic drift, draft, stability, and passive selections) are the main conditions of species evolution. Intervals with high rates of detrimental mutations are virtually absent from the fossil record due to the difficulty of identifying them. Our evidence, based on living populations indicate that insect wing deformities represent heritable hypomorphic mutations that are similar to those observed in Chernobyl and Fukushima. Newly collected assemblages from two of the major diversification intervals, the Cretaceous (J/K or K1) Yixian Formation in China and Permian/Triassic (P/T) Poldars Formation in Russia, exhibit cockroach wing deformity rates of 27% and 42.5% (n = 120, 73), respectively. Wing deformity and principal, family rank origination rates (seven peaks each) correlate from the Mississippian/Pennsylvanian to the present (~ 320 Ma, n = 5059, r = 0.83, P = 0.005, rSpearman = 0.77), which is the first significant support for the association of detrimental mutations and evolution on the geological scale. It unexpectedly provides direct evidence for association of high-taxonomic rank changes and accumulation of mutations (which is neither trivial nor self-evident due to sophisticated patterns of gene flow), while this relationship is absent at species and genus levels. According to uncertainty of the numerical dating of non-marine sediments, a regular 62.05 ± 0.02 Ma periodicity of diversification and mass mutagenesis with the last peak at 3.95 ± 0.2 Ma (peaks possibly associated with origin and/or radiation of dinosaurs and frogs; birds and angiosperms; modern mammals; humans), is explanatory.
Acknowledgements
We thank Adam Tomášových and Peter Barna (all Earth Science Institute SAS), Russel Garwood (Imperial College), Daniel Vlček and Jozef Masarik (both Comenius University, Bratislava) and six anonymous reviewers, Jörg W Schneider (Technical University, Bergakademie Freiberg) and Andrew Ross (National Museums Scotland) for their valuable suggestions, provision of background photographs and revisions of the manuscript and Andrej Čerňanský (Senckenberg Research Institute and Natural History Museum, Frankfurt), Matúš Hyžný, Martin Sabol (all Comenius University, Bratislava), and Alexei Prokin (Papanin Institute, Voronezh) for their valuable information. Mr Martin Styan provided linguistic correction. Supported by UNESCOAmba (MVTS), VEGA 02/0152, 0012-14, 2/0139/17; Literary fund, Schwarz stipend, Program of the Presidium RAS (The Problems of the Origin of Life and Formation of the Biosphere), Russian Foundation for Basic Research 11-04-01712, 13-04-01839, 16-04-01498; President RF (Support for Young Scientists MK-6619.2013.4). This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0436-12. D. R. was supported by the National Natural Science Foundation of China (No. 41688103, 31672323), Program for Changjiang Scholars and Innovative Research Team in University (IRT13081); P. V. designed and performed the research, and wrote the paper. D. A., D. W., D. R., R. O., and Ľ. V. performed the research. The authors declare no conflict of interests.
References
Andersen P.L., Xu F. & Xiao W. 2008. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell. Res. 18 (1): 162–173. 10.1038/cr.2007.114Suche in Google Scholar PubMed
Anisyutkin L.N. 2002. Notes on the cockroaches of the subfamilies Pycnoscelinae and Diplopterinae from South-East Asia with description of three new species (Dictyoptera: Blaberidae). Zoosystematica Rossica 10 (2): 351–359.10.31610/zsr/2001.10.2.351Suche in Google Scholar
Anisyutkin L.N. 2007. A new species of the genus Diploptera Saussure, 1864 from Borneo (Dictyoptera: Blaberidae: Diplopterinae). Zoosystematica Rossica 16 (2): 173–175.10.31610/zsr/2010.16.2.173Suche in Google Scholar
Anisyutkin L.N. & Gorochov A.V. 2008. A new genus and species of the cockroach family Blattulidae from Lebanese Amber (Dictyoptera, Blattina). Paleontol. J. 42 (1): 43–46. 10.1134/S0031030108010061Suche in Google Scholar
Anisyutkin L.N. & Gröhn C. 2012. Novye tarakany (Dictyoptera: Blattina) iz Baltiǐskogo yantarya, s opisaniem novogo roda i vida: Stegoblatta irmgardgroehni [New cockroaches (Dictyopterra: Blattina) from Baltic amber, with the description of a new genus and species: Stegoblatta irmgardgroehni]. Trudy Zoologicheskogo Instituta RAS / Proceedings of the Zoological Institute RAS /316 (3): 193–202.10.31610/trudyzin/2012.316.3.193Suche in Google Scholar
Archibald S.B. & Mathewes R.W. 2000. Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Can. J. Zool. 78 (8): 1441–1462. 10.1139/cjz-78-8-1441Suche in Google Scholar
Aristov D.S. 2015. Insects from a new Ufimian Locality of Troitsa in the Perm Region, Russia. Paleontol. J. 49 (5): 496–500. 10.1134/S0031030115050032Suche in Google Scholar
Aristov D.S., Bashkuev A.S., Golubeva V.K., Gorochov A.V., Karasev E.V., Kopylov D.S., Ponomarenko A.G., Rasnitsyn A.P., Rasnitsyn D.A., Sinitshenkova N.D., Sukatsheva I.D. & Vassilenko D.V. 2013. Fossil Insects of the Middle and Upper Permian of European Russia. Paleontol. J. 47 (7): 641–832. 10.1134/S0031030113070010Suche in Google Scholar
Atri D. & Melott A.L. 2011. Biological implications of high-energy cosmic ray induced muon flux in the extragalactic shock model. Geophys. Res. Lett. 38 (19), L19203, 3 pp. 10.1029/2011GL049027Suche in Google Scholar
Bai M., Beutel R.G., Klass K.-D., Zhang W.W., Yang X.K. & Wipfler B. 2016. †Alienoptera – A new insect order in the roach–mantodean twilight zone. Gondwana Res. 39: 317–326. 10.1016/j.gr.2016.02.002Suche in Google Scholar
Barbieri M. 2003. The Organic Codes. An Introduction to Semantic Biology. Cambridge Univ Press, 312 pp. ISBN: 052153100410.1017/CBO9780511614019Suche in Google Scholar
Barna P. 2014. Low diversity cockroach assemblage from Chernovskie Kopi in Russia confirms deformations at J/K boundary. Biologia 69 (5): 651–675. 10.2478/s11756-014-0349-9Suche in Google Scholar
Barraclough T.G. & Savolainen V. 2001. Evolutionary rates and species diversity in flowering plants. Evolution 55 (4): 677–683. 10.1111/j.0014-3820.2001.tb00803.xSuche in Google Scholar
Batygin K. & Brown M.E. 2016. Evidence for a distant giant planet in the Solar system. Astron. J. 151 (2): 22, 12 pp. 10.3847/0004-6256/151/2/22Suche in Google Scholar
Bekker-Migdisova E.E. 1961. Otryad Blattodea. Tarakanovye [Order Blattodea. Cockroach-like insects], 2, pp. 89–157. In: Rodendorf B.B., Bekker-Megdicova E.E., Martynova O.M. & Sharov A.G. (eds), Paleozoǐskoe nasekomye Kuznetskogo basseǐna [Paleozoic insects of the Kuznetsk Basin], Trudy Paleontologicheskogo Instituta Rossǐlskoǐ akademii nauk [Trans. Paleontol. Inst. AS SSSR], 85 (2), Nauka, Moscow, 705 pp.Suche in Google Scholar
Bechly G. 2007. ‘Blattaria’: cockroaches and roachoids, pp. 239–249. In: Martill D., Bechly G. & Loveridge R.F. (eds), The Crato Fossil Beds of Brazil: Window into an Ancient World, Cambridge University Press, Cambridge, 674 pp. ISBN: 9780-521-85867-010.1017/CBO9780511535512Suche in Google Scholar
Benton M.J. 2004. Origin and relationships of Dinosauria, pp. 7–19. In: Weishampel D.B., Dodson P. & Osmolska H. (eds), The Dinosauria, Univ. California Press, Berkeley, 880 pp. ISBN: 0520941438, 9780520941434Suche in Google Scholar
Benton M.J., Walker A.D. 2002. Erpetosuchus, a crocodile-like basal archosaur from the Late Triassic of Elgin, Scotland. Zool. J. Linn. Soc. 136 (1): 25–47. 10.1046/j.1096-3642.2002.00024.xSuche in Google Scholar
Béthoux O., Schneider J.W. & Klass K.-D. 2011. Redescription of the holotype of Phyloblatta gaudryi (Agnus, 1903) (Pennsylvanian; Commentry, France), an exceptionally well preserved stem-dictyopteran. Geodiversitas 33 (4): 625–635. 10.5252/g2011n4a4.Suche in Google Scholar
Bohn H., Picker M., Klass K.-D. & Colville J. 2010. A Jumping Cockroach from South Africa, Saltoblattella montistabularis, gen. nov., spec. nov. (Blattodea: Blattellidae). Arthropod Syst. Phylogeny 68 (1): 53–69.Suche in Google Scholar
Bollati V. & Baccarelli V. 2010. Environmental epigenetics. Heredity 105: 105–112. 10.1038/hdy.2010.2Suche in Google Scholar PubMed PubMed Central
Bourguignon T., Lo N., Cameron S.L., Sobotnik J., Hayashi Y., Shigenobu S., Watanabe D., Roisin Y., Miura T. & Evans T.A. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32 (2): 406–421. 10.1093/molbev/msu308.Suche in Google Scholar PubMed
Breen M.S., Kemena C., Vlasov P.K., Notredame C. & Kondrashov F.A. 2012. Epistasis as the primary factor in molecular evolution. Nature 490: 535–538. 10.1038/nature11510Suche in Google Scholar PubMed
Bulmer M.G. 1972. The genetic variability of polygenic characters under optimizing selection, mutation and drift. Genet. Res. 19 (1): 17–25. 10.1017/S0016672300Suche in Google Scholar
Burnham L. 1981. Fossil insects from Montceau-les-Mines (France): A preliminary report. Bulletin Trimestriel de la Société d’Histoire Naturelle et des Amis du Museum d’Autun 100: 5–12.Suche in Google Scholar
Carr M. 2002. DNA structure dependent checkpoints as regulators of DNA repair. DNA Repair (Amst.) 1 (12): 983–994. 10.1016/S1568-7864(02)00165-9Suche in Google Scholar
Castronovo F.P. 1999. Teratogen update: Radiation and Chernobyl. Teratology 60 (2): 100–106. 10.1002/(SICI)1096-9926(199908)60:2<100::AID-TERA14>3.0.CO;2-HSuche in Google Scholar
Cavalli-Sforza L.L. 2002. Human genetic and linguistic diversity, pp. E37–E53. In: Pagel M. (ed.), Encyclopedia of Evolution, Vol. 1, Oxford Univ Press, 556 pp. ISBN: 0-19-514864-9. 0.1093/acref/9780195122008.001.0001Suche in Google Scholar
Cave M.D. 1976. Absence of rDNA amplification in the uninucleolate oocyte of the cockroach Blattella germanica (Oorthoptera: Blattidae). J. Cell. Biol. 71 (1): 49–58. 10.1083/jcb.71.1.49Suche in Google Scholar
Che Y.L., Wang D., Shi Y., Du X.H., Zhao Y.Q., Lo N. & Wang Z.Q. 2016. A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. Mol. Phylogenet. Evol. 98: 201–209. 10.1016/j.ympev.2016.02.005Suche in Google Scholar
Cheng X.F., Zhang L.P., Yu D.N., Storey K.B. & Zhang J.Y. 2016. The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phylogenetic analyses within cockroaches. Gene 586 (1): 115–122. 10.1016/j.gene.2016.03.057.Suche in Google Scholar
Cifuentes-Ruiz P., Vršanský P., Vega F.J., Cevallos-Ferriz S.R.S., González-Soriano E. & Delgado de Jesús C.R. 2006. Terrestrial arthropods from the Cerro del Pueblo Formation (Campanian Late Cretaceous), Difunta Group, NE Mexico. Geol. Carpath. 57 (5): 347–354.Suche in Google Scholar
Cohen K.M., Finney S., Gibbard P.L. 2013. International chronostratigraphic chart 2013/01. International Commision on Stratigraphy. http://www.stratigraphy.org/ICSchart/ChronostratChart2013-01.pdf (accessed 06.08.2016)Suche in Google Scholar
Cornette J.L., Lieberman B.S. & Goldstein R.H. 2002. Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO2 levels. Proc. Natl. Acad. Sci. U.S.A. 99 (12): 7832–7835. 10.1073/pnas.122225499Suche in Google Scholar
Cui Y. & Ren D. 2013. Neotype designation for Sinonamuropteris ningxiaensis Peng, Hong et Zhang, 2005 (Grylloblattida, Late Carboniferous). Zootaxa 3694: 596–599. 10.11646/zootaxa.3694.6.7Suche in Google Scholar
Čerňanský A. 2010. A revision of chamaeleonids from the Lower Miocene of the Czech Republic with description of a new species of Chamaeleo (Squamata, Chamaeleonidae). Geobios 43 (6): 605–613. 10.1016/j.geobios.2010.04.001Suche in Google Scholar
Davis M., Hut P. & Muller R.A. 1984. Extinction of species by periodic comet showers. Nature 308: 715–717. 10.1038/308715a0Suche in Google Scholar
Ding Q.H., Zhang L.D., Guo S.Z., Zhang C.J., Peng Y.D., Jia B., Chen S.W. & Xing D.H. 2001. The stratigraphic sequence and fossil bearing horizon of the Yixian Formation in western Liaoning, China. Geology and Resources 10 (4): 193–198. [in Chinese with English abstract]Suche in Google Scholar
Dittmann I.L., Hörnig M.K., Haug J.T. & Haug C. 2015. Raptoblatta waddingtonae n. gen. et n. sp. – an Early Cretaceous roach-like insect with a mantodean-type raptorial foreleg. Palaeodiversity 8: 103–111.Suche in Google Scholar
Djernaes M., Klass K.-D., Picker M.D. & Damgaard J. 2012. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out-group sampling. Sys. Entomol. 37 (1): 65–83. 10.1111/j.1365-3113.2011.00598.xSuche in Google Scholar
Djernaes M., Klass K.D. & Eggleton P. 2015. Identifying possible sister groups of Cryptocercidae plus Isoptera: A combined molecular and morphological phylogeny of Dictyoptera. Molec. Phylogenet. Evol. 84: 284–303. 10.1016/j.ympev.2014.08.019Suche in Google Scholar
Dmitriev V.J. & Ponomarenko A.G. 2002. Dynamics of insect taxonomic diversity, Chapter 3.1. pp. 325–330. In: Rasnitsyn A. P & Quicke D.L.J. (eds), History of Insects, Kluwer, Dodrecht, 516 pp. ISBN: 1-4020-0026-XSuche in Google Scholar
Dubrovsky E.B., Dretzen G. & Bellard M. 1994. The Drosophila broad-complex regulates developmental changes in transcription and chromatin structure of the 67 B heat-shock gene cluster. J. Mol. Biol. 241 (3): 353–362. 10.1006/jmbi.1994.1512Suche in Google Scholar
Eldredge N. & Gould S.J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, Chapter 5, pp. 82–115. In: Schopf T.J.M. (ed.), Models in Paleobiology, Freeman, Cooper & Company, San Francisco, 250 pp. ISBN-10: 0877353255, ISBN-13: 978-0877353256Suche in Google Scholar
Eo S.H. & DeWoody J.A. 2010. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proc. Roy. Soc. Ser. B Biol. Sci. Lond. 277 (1700): 3587–3592. 10.1098/rspb.2010.0965.Suche in Google Scholar
Esnault C., Cornelis G., Heidmann O. & Heidmann T. 2013. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV Syncytin, captured for a function in placentation. PLoS Genetics 9 (3): e1003400. 10.1371/journal.pgen.1003400Suche in Google Scholar
Evans S.E. 2003. At the feet of the dinosaurs: the origin, evolution and early diversification of squamate reptiles (Lepidosauria: Diapsida). Biol. Rev. 78: 513–551. 10.1017/S1464793103006134Suche in Google Scholar
Evans S.E. & Borsuk-BOn theiałynicka M. 2009. The Early Triassic stem-frog Czatkobatrachus from Poland. Palaeontol. Pol. 65: 79–105.Suche in Google Scholar
Evans K.L. & Gaston K.J. 2005. Can the evolutionary-rates hypothesis explain species-energy relationships? Funct. Ecol. 19 (6): 899–915. 10.1111/j.1365-2435.2005.01046.xSuche in Google Scholar
Fitch W.M. & Markowitz E. 1970. An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem. Gen. 4 (5): 579–593. 10.1007/BF00486096Suche in Google Scholar
Flégr J. 1998. On the ”Origin” of natural selection by means of speciation. Riv. Biol. – Biol. Forum 91: 291–304.Suche in Google Scholar
Flégr J. 2006. Zamrzlá evoluce aneb je to jinak pane Darwin [Frozen Evolution. Or, that’s not the way it is, Mr. Darwin]. Academia, Praha, 328 pp. ISBN: 978-80-200-1526-6Suche in Google Scholar
Flégr J. 2015. Evoluční tárí aneb o původů rodů. Academia, Praha, 404 pp. ISBN: 978-80-200-2481-7Suche in Google Scholar
Foote M. 2000. Originations and extinction components of taxonomic diversity: General problems. Paleobiology 26 (sp. 4): 74–102. 10.1666/0094-8373(2000)26[74:OAECOT]2.0. CO;2Suche in Google Scholar
Friedberg E.C., Wagner R. & Radman M. 2002. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296 (5573): 162–165. 10.1126/science.1070236Suche in Google Scholar PubMed
Fujiyama I. 1973. Mesozoic insect fauna of East Asia. Part I. Introduction and Upper Triassic faunas. Bull. Natl. Sci. Mus. Tokyo C 16 (2): 331–391.Suche in Google Scholar
Gao T, Shih C., Engel M.S. & Ren D. 2016. A new xyelotomid (Hymenoptera) from the Middle Jurassic of China displaying enigmatic venational asymmetry. BMC Evol. Biol. 16: 155. 10.1186/s12862-016-0730-0Suche in Google Scholar PubMed PubMed Central
Gao G.Q. & Shubin N.H. 2003. Earliest known crown-group salamanders. Nature 422: 422–428. 10.1038/nature01491Suche in Google Scholar PubMed
Gillooly J.F., Allen A.P., West G.B. & Brown J.H. 2005. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. USA 102 (11): 140–145. 10.1073/pnas.0407735101Suche in Google Scholar PubMed PubMed Central
Gillman L.N., Keeling D.J., Gardner R.C. & Wright S.D. 2010. Faster evolution of highly conserved DNA in tropical plants. J. Evol. Biol. 23 (6): 1327–1330. 10.1111/j.1420-9101.2010.01992.x.Suche in Google Scholar PubMed
Godefroit P., Cau A., Hu D.Y., Escuillié F., Wu W. & Dyke G. 2013. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498: 359–362. 10.1038/nature12168Suche in Google Scholar PubMed
Goldie X., Lanfear R. & Bromham L. 2011. Diversification and the rate of molecular evolution: no evidence of a link in mammals. BMC Evol. Biol. 11: 286. 10.1186/1471-2148-11-286Suche in Google Scholar PubMed PubMed Central
Gorokhov A.V. 2007. New and little known orthopteroid insects (Polyneoptera) from fossil resins: Communication 2. Paleontol. J. 41 (2): 156–166. 10.1134Suche in Google Scholar
Gould S.J. & Eldredge N. 1993. Punctuated equilibrium comes of age. Nature 366: 223–227. 10.1038/366223a0Suche in Google Scholar PubMed
Gradstein F.M, Ogg J.G. & Smith A.G. (eds). 2005. A Geologic Time Scale 2004 (With Geologic Time Scale Poster), 610 pp. ISBN-13: 9780521786737, ISBN-10: 0521786738)10.1017/CBO9780511536045Suche in Google Scholar
Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M. (eds). 2012. The Geologic Time Scale 2012. 1st ed. Amsterdam, Elsevier, 1176 pp. ISBN: 978-0-44-459425-9.Suche in Google Scholar
Griffiths A.J.F., Wessler S.R., Lewontin R.C. & Carrol S.B. 2008. Introduction to Genetic Analysis. 10. Freeman and Co, New York, 838 pp. ISBN: 0716768879, 9780716768876Suche in Google Scholar
Grimaldi D. & Engel M. 2005. Evolution of Insects. Cambridge Univ Press, New York, 772 pp. ISBN-10: 0521821495, ISBN-13: 978-0521821490Suche in Google Scholar
Guo Y., Béthoux O., Gu J. & Ren D. 2013. Wing venation homologies in Pennsylvanian ‘cockroachoids’ (Insecta) clarified thanks to a remarkable specimen from the Pennsylvanian of Ningxia (China). J. Syst. Palaeontol. 11 (1): 41–46. 10.1080/14772019.2011.637519Suche in Google Scholar
Hesse-Honegger C. 2002. Heteroptera. Das Schöne und das Andere oder Bilder einer mutierenden Welt. Steidl Verlag, Göttingen, 312 pp. ISBN-10: 3882433604, ISBN-13: 9783882433609Suche in Google Scholar
Hiyama A., Nohara C., Kinjo S., Taira W., Gima S., Tanahara A. & Otaki J.M. 2012. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci. Rep. 2: 570. 10.1038/srep00570Suche in Google Scholar PubMed PubMed Central
Hmich D., Schneider J.W., Saber H. & El Wartiti M. 2003. First Permocarboniferous insects (blattids) from North Africa (Morocco) – implications on paleobiogeography and palaeo-climatology. Freiberger Forschungshefte C 499 (11): 117–134.Suche in Google Scholar
Hmich D., Schneider J.W., Saber H. & El Wartiti M. 2005. Spiloblattinidae (Insecta, Blattida) from the Carboniferous of Morocco, North Africa – Implications for Biostratigraphy, pp. 111–114. In: Lucas S.G. & Zeigler K.E. (eds), The Nonmarine Permian, New Mexico Museum of Natural History and Science Bulletin No. 30, 362 pp.Suche in Google Scholar
Hmich D., Schneider J.W., Saber H., Voigt S. & El Wartiti M. 2006. New continental Carboniferous and Permian faunas of Morocco: implications for biostratigraphy, palaeobiogeography and palaeoclimate, pp. 297–324. In: Lucas S.G., Cassinis G., & Schneider J.W. (eds), Non-Marine Permian Biostratigraphy and Biochronology, Geological Society, London, Special Publications 265, 351 pp. 10.1144/GSL.SP.2006.265.01.01. ISBN-10: 1-86239-206-4, ISBN-13: 978-1-86239-206-9Suche in Google Scholar
Hopkins H. 2014. A revision of the genus Arenivaga (Rehn) (Blattodea, Corydiidae), with descriptions of new species and key to the males of the genus. ZooKeys 384: 1–256. 10.3897/zookeys.384.6197Suche in Google Scholar PubMed PubMed Central
Hörnig M.K., Haug J.T. & Haug C. 2013. New details of Santanmantis axelrodi and the evolution of the mantodean morphotype. Palaeodiversity 6: 157–168.Suche in Google Scholar
Huang J.-H., Lozano J. & Belles X. 2013. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim. Biophys. Acta 1830 (1): 2178–2187. 10.1016/j.bbagen.2012.09.025.Suche in Google Scholar PubMed
Huber P., McDonald N.G. & Olsen P.E. 2003. Early Jurassic insects from the Newark supergroup, Northeastern United States, pp. 206–223. In: LeTourneau P.M. & Olsen P.E. (eds), The Great Rift Valleys of Pangea in Eastern North America, Volume 2, Sedimentology, Stratigraphy, Paleontology, Columbia University Press, New York, 248 pp. ISBN: 0-231-12676-X, 9780231126762Suche in Google Scholar
Iorio L 2009. Constraints on planet X/Nemesis from Solar System’s inner dynamics. Mon. Not. Roy. Astron. Soc. 400 (1): 346–353. 10.1111/j.1365-2966.2009.15458.xSuche in Google Scholar
Irisarri I., San Mauro D., Abascal F., Ohler A., Vences M. & Zardoya R. 2012. The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics 13: 626. 10.1186/1471-2164-13-626.Suche in Google Scholar PubMed PubMed Central
Jablonski D., Belanger C., Berke S., Huang S., Krug A.Z., Roy K., Tomasovych A. & Valentine J.W. 2013. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl. Acad. Sci. USA 110 (26): 10487–10494. 10.1073/pnas.1308997110Suche in Google Scholar PubMed PubMed Central
Janecka J., Chowdhary B. & Murphy W. 2012. Exploring the correlations between sequence evolution rate and phenotypic divergence across the Mammalian tree provides insights into adaptive evolution. J. Biosci. 37 (5): 897–909. 10.1007/s12038-012-9254-ySuche in Google Scholar PubMed
Jeon M.G. & Park Y.C. 2015. The complete mitogenome of the wood-feeding cockroach Cryptocercus kyebangensis (Blattodea: Cryptocercidae) and phylogenetic relations among cockroach families. Animal Cells and Systems 19 (6): 432–438. 10.1080/19768354.2015.1105866Suche in Google Scholar
Ji Q., Liu Y.G. & Jiang X.J. 2011. On the Lower Cretaceous in Yixian county of Jinzhou city, Western Liaoning, China. Acta Geol. Sin.-Eng. Ed. 85 (2): 437–442. 10.1111/j.1755-6724.2011.00411.xSuche in Google Scholar
Ji Q., Luo Z.X., Yuan C.X., Wible J.R. Zhang J.P. & Georgi J.A. 2002. The earliest known eutherian mammal. Nature 416: 816–822. 10.1038/416816aSuche in Google Scholar PubMed
Johnson L.J. & Tricker P.J. 2010. Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity 105: 113–121. 10.1038/hdy.2010.25Suche in Google Scholar PubMed
Joyce W.G. & Gauthier J.A. 2004. Palaeoecology of Triassic stem turtles sheds new light on turtle origins. Proc. R. Soc. Lond. B Biol. Sci. 271 (1534): 1–5. 10.1098/rspb.2003.2523Suche in Google Scholar PubMed PubMed Central
Kaidanov L.Z., Bolshakov V.N., Tzygvintzev P.N. & Gvozdev V.A. 1991. The sources of genetic variability in highly inbred long-term selected strains of Drosophila melanogaster. Genetica 85 (1): 73–78. 10.1007/BF00056108Suche in Google Scholar PubMed
Kauffman S. 2004. Autonomous Agents, Part VI, Chapter 29, pp. 654–666. In: Barrow J.D., Davies P.C.W. & Harper C.L. Jr. (eds), Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, Cambridge University Press, 742 pp. ISBN: 978052183113010.1017/CBO9780511814990.032Suche in Google Scholar
Kielan-Jaworowska Z., Cifelli R.L. & Luo Z.X. 2004. Mammals from the Age of Dinosaurs-origins, Evolution, and Structure. Columbia University Press, New York, 648 pp. ISBN-10: 0231119186, ISBN-13: 978-023111918410.7312/kiel11918Suche in Google Scholar
Kikuchi R. 2010. External forces acting on the Earth’s climate: an approach to understanding the complexity of climate change. Energy & Environment 21 (8): 953–968. 10.1260/0958-305X.21.8Suche in Google Scholar
Kolbe S.E., Lockwood R. & Hunt G. 2011. Does morphological variation buffer against extinction? A test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37 (3): 355–368. 10.1666/09073.1Suche in Google Scholar
Krassilov V.A. 2003. Terrestrial Paleoecology and Global Change. Series: Russian Academic Monographs 1, Pensoft, Sofia, Moscow, 480 pp. ISBN: 9546421537 Kunkel J.G. 2006. Are cockroaches resistant to radiation? http://www.bio.umass.edu/biology/kunkel/cockroach_faq.html#Q5 (accessed 10.06.2006)Suche in Google Scholar
Labandeira C. 1994. A compendium of fossil insect families. Milwaukee Public Museum Contributions in Biology and Geology 88: 1–87.Suche in Google Scholar
Labandeira C. 2011. Evidence for an earliest late carboniferous divergence time and the early larval ecology and diversification of major Holometabola lineages. Entomol. Am. 117 (1/2): 9–21. 10.1664/10-RA-011.1Suche in Google Scholar
Labandeira C. & Sepkoski J.J. 1993. Insect diversity in the fossil record. Science 261: 310–315. 10.1126/science.11536548Suche in Google Scholar PubMed
Lancaster L.T. 2010. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages. BMC Evol. Biol. 10: 162. 10.1186/1471-2148-10-162Suche in Google Scholar PubMed PubMed Central
Lande R. 1976. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26 (3): 221–235. 10.1017/S0016672300016037Suche in Google Scholar
Lanfear R., Ho S.Y.W., Love D. & Bromham L. 2010. Mutation rate is linked to diversification in birds. Proc. Natl. Acad. Sci. USA 107 (47): 20423–20428. 10.1073/pnas.1007888107Suche in Google Scholar PubMed PubMed Central
Lee S.W. 2014. New Lower Cretaceous basal mantodean (Insecta) from the Crato Formation (NE Brazil). Geol. Carpath. 65 (4): 285–292. 10.2478/geoca-2014-0019Suche in Google Scholar
Lee S.W. 2016. Taxonomic diversity of cockroach assemblages (Blattaria, Insecta) of the Aptian Crato Formation (Cretaceous, NE Brazil). Geol. Carpath. 67 (5): 433–450. 10.1515/geoca-2016-0027Suche in Google Scholar
Legendre F., Nel A., Svenson G.J., Robillard T., Pellens R. & Grandcolas P. 2015. Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS One 10 (7): e0130127. 10.1371/journal.pone.0130127Suche in Google Scholar PubMed PubMed Central
Li X. & Wang Z. 2015. A taxonomic study of the beetle cockroaches (Diploptera Saussure) from China, with notes on the genus and species worldwide (Blattodea: Blaberidae: Diplopterinae). Zootaxa 4018 (1): 35–56. 10.11646/zootaxa.4018.1.2.Suche in Google Scholar PubMed
Liang J.-H., Vršanský P. & Ren D. 2012. Variability and symmetry of a Jurassic nocturnal predatory cockroach (Blattida: Raphidiomimidae). Rev. Mex. Cienc. Geol. 29 (2): 411–421.Suche in Google Scholar
Liang J.-H., Yinxia G., Ren D. & Shih C. 2010. Blattodea –– Survivors of the Fittest, Chapter 8, pp. 73–83. In: Ren D., Shih C., Gao T. & Yao Y.Y. (eds), Silent stories – Insect Fossil Treasures from Dinosaur Era of the Northeastern China, Science Press, Beijing, 322 pp. ISBN-10: 7030281918, ISBN-13: 9787030281913Suche in Google Scholar
Lucas S.G., Barrick J.E., Krainer K. & Schneider J.W. 2013. The Carboniferous-Permian boundary at Carrizo Arroyo, Central New Mexico, USA. Stratigraphy 10 (3): 153–170.Suche in Google Scholar
Lucańas C.C. & Lit I.L. Jr. 2016. Cockroaches (Insecta, Blattodea) from caves of Polillo Island (Philippines), with description of a new species. Subterranean Biol. 19: 51–64. 10.3897/subtbiol.19.9804Suche in Google Scholar
Luhman K.L. & Sheppard S.S. 2014. Characterization of high proper motion objects from the wide-field infrared survey explorer. Astrophys. J. 787 (2): 126–126. 10.1088/0004-637X/787/2/126Suche in Google Scholar
Lukashevich E.D. 2011. New nematocerans (Insecta: Diptera) from the Late Jurassic of Mongolia. Paleontol. J. 45 (6): 620–628. 10.1134/S0031030111060098Suche in Google Scholar
Martínez-Delclós X. 1993. Blátidos (Insecta, Blattodea) del Cretácico Inferior de Espańa. Familias Mesoblattinidae, Blattulidae y Poliphagidae. Boletín Geológico y Minero 104 (5): 52–74Suche in Google Scholar
Martins-Neto R.G., Mancuso A. & Gallego O.F. 2005. La fauna de insectos triásicos de la Argentina. Blattoptera de la Formación Los Rastros (cuenca del Bermejo) provincia de La Rioja [The Triassic insect fauna from Argentina. Blattoptera from the Los Rastros Formation (Bemejo Basin), La Rioja Province.] Ameghiniana 42 (4): 705–723.Suche in Google Scholar
Martynov A.V. 1937. Liasovye nasekomye Shuraba I Kizil-Kin [Liassic insects from Shurab and Kisyl-Kiya], Part II. Blattodea. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 7 (1): 183–232.Suche in Google Scholar
Mayr E. 1976. Evolution and the Diversity of Life. 3rd ed. Belknap Press of Harvard University Press, Cambridge, 721 pp. ISBN: 0674271041, 9780674271043Suche in Google Scholar
Mayr G., Pohl B. & Peters D.S. 2005. A well-preserved Archaeopteryx specimen with theropod features. Science 310: 1483–1486. 10.1126/science.1120331Suche in Google Scholar
McDonald J.F. 1995. Transposable elements – possible catalysts of organismic evolution. Trends Ecol. Evol. 10 (1-3): 123–126. 10.1016/S0169-5347(00)89012-6Suche in Google Scholar
Medvedev M. & Melott A. 2006. The cosmogenic origin of the 62 Myr biodiversity oscillation. Astrobiology 6 (1): 240.Suche in Google Scholar
Melott A.L. & Bambach R.K. 2010. Nemesis reconsidered. Mon. Not. Roy. Astron. Soc. 407 (1): L99–L102. 10.1111/j.1745-3933.2010.00913.xSuche in Google Scholar
Melott A.L. & Bambach R.K. 2011. A ubiquitous similar to 62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37 (3): 383–408. 10.1666/09055.1Suche in Google Scholar
Melott A.L. & Bambach R.K. 2013. Do periodicities in extinction with possible astronomical connections survive a revision of the geological timescale? Astroph. J. 773 (1): 6. 10.1088/0004-637X/773/1/6Suche in Google Scholar
Melott A.L., Bambach R.K., Petersen K.D. & McArthur J.M. 2012. An ?60-million-year periodicity is common to marine 87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: What does the periodicity reflect? J. Geol. 120 (2): 217–226. 10.1086/663877.Suche in Google Scholar
Mikó I., Copeland R.S., Balhoff J.P., Yoder M.J. & Deans A.R. 2014. Folding wings like a cockroach: A review of transverse wing folding ensign wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania) PLoS One 9 (5): e94056. 10.1371/journal.pone.0094056Suche in Google Scholar PubMed PubMed Central
Mikulíček P., Jandzik D., Fritz U., Schneider C. & Široký P. 2013. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise. Biol. J. Linn. Soc. 108 (1): 151–160. 10.1111/j.1095-8312.2012.01999.xSuche in Google Scholar
Mugat B., Brodu V., Kejzlarova-Lepesant J., Antoniewski C., Bayer C.A., Fristrom J.W. & Lepesant J.A. 2000. Dynamic expression of broad-complex isoforms mediates temporal control of an ecdysteroid target gene at the onset of Drosophila metamorphosis. Devel. Biol. 227 (1): 104–117. 10.1006/dbio.2000.9879Suche in Google Scholar PubMed
Nalepa C.A. 2015. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40 (4): 323–335. 10.1111/een.12197Suche in Google Scholar
Nicholson D.B., Mayhew P.J. & Ross A.J. 2015. Changes to the fossil record of insects through fifteen years of discovery. PLoS One 10 (7): e0128554. 10.1371/journal.pone.0128554Suche in Google Scholar
Nicholson D.B., Ross A.J. & Mayhew P.J. 2014. Fossil evidence for key innovations in the evolution of insect diversity. Proc. Roy. Soc. B 281 (1793): 20141823. 10.1098/rspb.2014.1823Suche in Google Scholar
Novozhenov Y.I. & Korobizyn N.M. 1972. Aberrativnaya izmenchivosf v prirodnykh populyatsiyakh nasekomykh [Aberrant variation in natural insect populations]. Zh. Obshch. Biol. 33 (3): 315–324.Suche in Google Scholar
Oružinský R. & Vršanský P. 2017. Cockroach forewing area and venation variabilities relate. Biologia 72: 813–817. 10.1515/biolog-2017-0090Suche in Google Scholar
Padian K. 1997. Origin of Dinosaurs, pp. 481–486. In: Currie P.J. & Padian K. (eds), Encyclopedia of Dinosaurs, Academic Press, New York, 869 pp. ISBN: 9780122268106Suche in Google Scholar
Papier F., Grauvogel-Stamm L. & Nel A. 1994 Subioblatta undulata n. sp., a new Blattodea (Subioblattidae Schneider) from the Upper Bunter (Anisian) of the Vosges Mountains (France). Morphology, systematics and affinities. Neues Jahrbuch fur Geologie und Paläontologie, Monatshefte 1994 (5): 277–290.Suche in Google Scholar
Papier F. & Grauvogel-Stamm L. 1995. Les Blattodea du Trias: Le genre Voltziablatta n. gen. du Buntsandstein supérieur des Vosges (France) [The Triassic Blattodea: The genus Voltziablatta n. gen. from the Upper Bunter of the Vosges Mountains (France)]. Paleontographica A 235 (4–6): 141–162.10.1127/pala/235/1995/141Suche in Google Scholar
Picker M., Colville J.F. & Burrows M. 2012. A cockroach that jumps. Biol. Lett. 8 (3): 390–392. 10.1098/rsbl.2011.1022Suche in Google Scholar
Piton L.E. 1936. Les Orthopteres tertiaires d’Auvergne. Misc. Entomol. 37: 77–79.Suche in Google Scholar
Piton L.E. 1940. Paléontologie du gisement éocčne de Menat (Puy-de-Dôme) (flore et faune). Mémoires de la Société d’Histoire Naturelle d’Auvergne, Clermont-Ferrand 1: 1–303.Suche in Google Scholar
Poinar G. & Brown A.E. 2017. An exotic insect Aethiocarenus burmanicus gen. et sp. nov. (Aethiocarenodea ord. nov., Aethiocarenidae fam. nov.) from mid-Cretaceous Myanmar amber. Cretaceous Res. 72: 100–104. 10.1016/j.cretres.2016.12.011Suche in Google Scholar
Ponomarenko A.G. 2016. Insects during the time around the Permian-Triassic crisis. Paleontol. J. 50 (2): 174–186. 10.1134/S0031030116020052Suche in Google Scholar
Potgieter M., Ferreira S. & Du Toit S. 2011. Galactic cosmic rays in the dynamic heliosphere, pp. 441–453. In: Giani S., Leroy C. & Rancoita P.G. (eds), Cosmic Rays For Particle and Astroparticle Physics Book Series: Astroparticle Particle Space Physics Radiation Interaction Detectors and Medical Physics Application Vol. 6, 668 pp. ISBN: 978-981-4329-02-610.1142/9789814329033_0055Suche in Google Scholar
Qin J. & Li L. 2003. Molecular anatomy of the DNA damage and replication checkpoints. Radiat. Res. 159 (2): 139–148. 10.1667/0033-7587(2003)159[0139:MAOTDD]2.0.CO;2Suche in Google Scholar
Rage J.C. & Roček Z. 1989. Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the Early Triassic. Palaeontographica A 206 (1-3): 1–16.Suche in Google Scholar
Ramel C. 1989. The nature of spontaneous mutations. Mutat. Res. 212 (1): 33–42. 10.1016/0027-5107(89)90020-1Suche in Google Scholar
Rasnitsyn A.P. 2002. Protsess evolyutsii i metodologya sistematiki [Evolutionary process and methodology of systematics]. Ňr. Russ. Entomol. Obshch. [Proc. Russ. Entomol. Soc.] 73: 1–108.Suche in Google Scholar
Rasnitsyn A.P., Bashkuev A.S., Kopylov D.S., Lukashevich E.D., Ponomarenko A.G., Popov J.A., Rasnitsyn D.A., Ryzhkova O.V., Sidorchuk E.A., Sukatsheva I.D. & Vorontsov D.D. 2016. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretaceous Res. 61: 234–255. 10.1016/j.cretres.2015.12.025Suche in Google Scholar
Rasnitsyn A.P. & Quicke D.L.J. (eds). 2002. History of Insects. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 517 pp. ISBN: 978-1-4020-0026-310.1007/0-306-47577-4Suche in Google Scholar
Raup D.M. & Sepkoski J.J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215: 1501–1503. 10.1126/science.215.4539.1501Suche in Google Scholar
Reddy G.P.V. & Chippendale G.M. 1972. Observations on the nutritional requirements of the northwestern corn borer Diatraea grandiosella. Entomol. Exp. Appl. 15 (1): 51–60. 10.1111/j.1570-7458.1972.tb02083.xSuche in Google Scholar
Rifkin S.A., Houle D., Kim J. & White K.P. 2005. A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature 438: 220–223. 10.1038/nature04114Suche in Google Scholar
Ross A.J. 2001. The Purbeck and Wealden cockroaches and their potential use in biostratigraphy. Thesis (Ph.D.), University of Brighton.Suche in Google Scholar
Ross A.J. 2012. Testing decreasing variability of cockroach forewings through time using four Recent species: Blattella germanica, Polyphaga aegyptiaca, Shelfordella lateralis and Blaberus craniifer, with implications for the study of fossil cockroach forewings. Insect Sci. 19 (2): 129–142. 10.1111/j.1744-7917.2011.01465.xSuche in Google Scholar
Russell P.J. 2002. IGenetics. Benjamin Cummings, San Francisco, 828 pp. ISBN: 0805345531 9780805345537Suche in Google Scholar
Sendi H. & Azar D. 2017. New aposematic and presumably repellent bark cockroach from Lebanese amber. Cretaceous Res. 72: 13–17. 10.1016/j.cretres.2016.11.013Suche in Google Scholar
Sereno P.C. 1999. The evolution of dinosaurs. Science 284: 2137–2147. 10.1126/science.284.5423.2137Suche in Google Scholar
Shaviv N.J. 2003. The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astronomy 8 (1): 39–77. 10.1016/S1384-1076(02)00193-8Suche in Google Scholar
Shaviv N.J. 2005. On the link between cosmic rays and terrestrial climate. Int. J. Mod. Phys. A 20: 6662–6665. 10.1142/S0217751X05029733Suche in Google Scholar
Shaviv N.J. & Veizer J. 2003. Celestial driver of Phanerozoic climate? GSA Today 13 (7): 4–10.10.1130/1052-5173(2003)013<0004:CDOPC>2.0.CO;2Suche in Google Scholar
Shcherbakov D.E. 2008. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42 (1): 15–31. 10.1134/S0031030108010036Suche in Google Scholar
Shcherbakov D.E. 2013. Permian ancestors of Hymenoptera and Raphidioptera. Zookeys 358: 45–67. 10.3897/zookeys.358.6289Suche in Google Scholar
Shrivastav M., De Haro L.P. & Nickoloff J.A. 2008. Regulation of DNA double-strand break repair pathway choice. Cell. Res. 18 (1): 134–147. 10.1038/cr.2007.111Suche in Google Scholar
Shubin N.H. & Jenkins F.A. Jr. 1995. An Early Jurassic jumping frog. Nature 377: 49–52. 10.1038/377049a0Suche in Google Scholar
Schmalhausen I.I. 1941. Stabiliziruyushchiĭ otrod I ego mesto sredi faktorov evoluytsii [Stabilizing selection and its place among factors of evolution]. Zh. Obshch. Biol. 2 (3): 307–354.Suche in Google Scholar
Schmied H. 2009. Cockroaches (Blattodea) from the middle Eocene of Messel (Germany). Diploma thesis, University of Bonn, 81 pp.Suche in Google Scholar
Schneider J.W. 1977. Zur Variabilität der Flügel paläozoischer Blattodea (Insecta), Teil I. Freiberger Forschungshefte C 326: 87–105.Suche in Google Scholar
Schneider J.W. 1978a. Zur Variabilität der Flügel paläozoischer Blattodea (Insecta), Teil II. Freiberger Forschungshefte C 334: 21–39.Suche in Google Scholar
Schneider J.W. 1978b. Zum Taxonomie und Biostratigraphie der Blattodea (Insecta) des Karbon und Perm der DDR. Freiberger Forschungshefte C 340: 1–152.Suche in Google Scholar
Schneider J.W. 1978c. Revision der Poroblattinidae (Insecta, Blattodea) des europäischen und nordamerikanischen Oberkarbon und Perm. Freiberger Forschungshefte C 342: 55–66.Suche in Google Scholar
Schneider J.W. 1980a. Zur Entomofauna des Jungpaläozoikums der Boskovicer Furche (CSSR), Teil I: Mylacridae (Insecta, Blattodea). Freiberger Forschungshefte C 357: 43–55.Suche in Google Scholar
Schneider J.W. 1980b. Zur Taxonomie der jungpaläozoischen Neorthroblattinidae (Insecta, Blattodea). Freiberger Forschungshefte C 348: 31–39.Suche in Google Scholar
Schneider J.W. 1983. Die Blattodea (Insecta) des Paläozoikums, Teil 1: Systematik, Ökologie und Biostratigraphie. Freiberger Forschungshefte C 382: 107–146.Suche in Google Scholar
Schneider J.W. 1984. Die Blattodea (Insecta) des Paläozoikums, Teil 2: Morphogenese der Flügelstrukturen und Phylogenie. Freiberger Forschungshefte C 391: 5–34.Suche in Google Scholar
Schneider J.W., Lucas S.G. & Barrick J. 2013. The Early Permian age of the Dunkard Group, Appalachian basin, U.S.A., based on spiloblattinid insect biostratigraphy. Int. J. Coal Geol. 119 (SI): 88–92. 10.1016/j.coal.2013.07.019Suche in Google Scholar
Schneider J.W., Lucas S.G. & Rowland J.M.2004. The Blattida (Insecta) fauna of Carrizo Arroyo, New Mexico – Biostratigraphic link between marine and nonmarine Pennsylvanian/Permian boundary profiles, pp. 247–261. In: Lucas S.G. & Zeigler K.E. (eds), Carboniferous-Permian Transition at Carrizo Arroyo, Central New Mexico. New Mexico Museum of Natural History and Science, Bulletin No. 25, 300 pp.Suche in Google Scholar
Schneider J.W. & Werneburg R. 1993. Neue Spiloblattinidae (Insecta, Blattodea) aus dem Oberkarbon und Unterperm von Mitteleuropa sowie die Biostratigraphie des Rotliegend. Veroff. Naturhist. Mus. Schleusingen 7/8: 31–52.Suche in Google Scholar
Schneider J.W. & Werneburg R. 2006. Insect biostratigraphy of the European late Carboniferous and early Permian, pp. 325–336. In: Lucas S.G., Cassinis G. & Schneider J.W. (eds), Nonmarine Permian Biostratigraphy and Biochronology, Geological Society, London, Special Publications 265, 352 pp. ISBN: 1-86239-206-4, 978-1-86239-206-910.1144/GSL.SP.2006.265.01.15Suche in Google Scholar
Schwarzbach M. 1939. Die älteste Insektenflügel. Bemerkungen zu einem oberschlesischen Funde. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereines N.F. 1939: 28–30.Suche in Google Scholar
Signor P.W. & Lipps J.H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record, pp. 291–296. 10.1130/SPE190-p291. In: Silver L.T. & Schultz P.H. (eds), Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geological Society of America, Special Paper 190, 546 pp. ISBN: 9780813721903. 10.1130/SPE190Suche in Google Scholar
Sinitshenkova N.D. 2000. Novye podenky iz verkhnemezozoǐskogo zabaǐkal’skogo mesonakhozhdeniyab Chernovskie Koli (Insecta: Ephemerida = Ephemeroptera) [New mayflies from the Upper Mesozoic Transbaikalian locality Chernovskie Kopi (Insecta: Ephemerida = Ephemeroptera)]. Paleontol. J. 34: 63–69.Suche in Google Scholar
Sinitza S.M. 1995. Chernovskiǐ paleontologocheskiǐ zapovednik [Chernovskii Paleontological Reserve]. Vest. Khiin. Politech. Univ. [Jubilee. Ed. Bull. Chita Polytech. Inst. Mosk. Gos. Univ.] 1: 70–84.Suche in Google Scholar
Šmídová L. & Lei X. 2017. The earliest amber-recorded type cockroach family was aposematic (Blattaria: Blattidae). Cretaceous Res. 72: 189–199. 10.1016/j.cretres.2017.01.008Suche in Google Scholar
Solórzano Kraemer M.M. 2007. Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Palaeontographica A 282 (1-6): 1–133. 10.1127/pala/282/2007/1Suche in Google Scholar
Sosov R.F 1955. Theoretical significance of mutation of microorganisms; consideration on publication of S.N. Muromtsev’s book, Variability of microorganisms in the problem of immunity, 1953. Zh. Mikrobiol. Epidemiol. Immunobiol. 12: 3–8. PMID: 13300910Suche in Google Scholar
Stindl R. 2014. The telomeric sync model of speciation: specieswide telomere erosion triggers cycles of transposon-mediated genomic rearrangements, which underlie the salutatory appearance of nonadaptive characters. Naturwissenschaften 101: 163–186. 10.1007/s00114-014-1152-8Suche in Google Scholar PubMed PubMed Central
Sukatsheva I.D. & Vassilenko D.V. 2011. Caddisflies from Chernovskie Kopi (Jurassic/Cretaceous of Transbaikalia). Zoosymposia 5: 434–438.10.11646/zoosymposia.5.1.37Suche in Google Scholar
Svensmark H. 1998. Influence of Cosmic Rays on Earth’s Climate. Phys. Rev. Lett. 81 (22): 5027–5030. 10.1103/Phys-RevLett.81.5027Suche in Google Scholar
Taberlet P., Zimmermann N.E., Englisch T., Tribsch A., Holderegger R., Alvarez N., Niklfeld H., Coldea G., Mirek Z., Moilanen A., Ahlmer W., Marsan P.A., Bona E., Bovio M., Choler P., Cieślak E., Colli L., Cristea V., Dalmas J.P., Frajman B., Garraud L., Gaudeul M., Gielly L., Gutermann W., Jogan N., Kagalo A.A., Korbecka G., Küpfer P., Lequette B., Letz D.R., Manel S., Mansion G., Marhold K., Martini F., Negrini R., Nińo F., Paun O., Pellecchia M., Perico G., Piękoś-Mirkowa H., Prosser F., Puşcaş M., Ronikier M., Scheuerer M., Schneeweiss G.M., Schönswetter P., Schratt-Ehrendorfer L., Schüpfer F., Selvaggi A., Steinmann K., Thiel-Egenter C., van Loo M., Winkler M., Wohlgemuth T., Wraber T., Gugerli F., IntraBioDiv Consortium & Vellend M. 2012. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15 (12): 1439–1448. 10.1111/ele.12004.Suche in Google Scholar PubMed
Tolley K.A., Tilbury C.R., Measey G.J., Menegon M., Branch W.R. & Matthee C.A. 2011. Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. J. Biogeogr. 38 (9): 1748–1760. 10.1111/j.1365-2699.2011.02529.xSuche in Google Scholar
Townsend T. & Larson A. 2006. Molecular phylogenetics and mitochondrial genomic evolution in the Chamaeleonidae (Reptilia, Squamata). Molec. Phylogenet. Evol. 23 (1): 22–36. 10.1006/mpev.2001.1076Suche in Google Scholar PubMed
Trujillo C.A. & Sheppard S.S. 2014. A Sedna-like body with a perihelion of 80 astronomical units. Nature 507: 471–474. 10.1038/nature13156Suche in Google Scholar PubMed
Vassilenko D.V. 2005a. Damages on mesozoic plants from the Transbaikalian locality Chernovskie Kopi. Paleontol. J. 39 (6): 54–59.Suche in Google Scholar
Vassilenko D.V. 2005b. New damselflies (Odonata: Synlestidae, Hemiphlebiidae) from Mesozoic Transbaikalian locality of Chernovskie Kopi. Paleontol. J. 39 (3): 55–58.Suche in Google Scholar
Vd’ačný P., Rajter Ľ., Shazib S.U.A., Jang S.W. & Shin M.K. 2017. Diversification dynamics of rhynchostomatian ciliates: the impact of seven intrinsic traits on speciation and extinction in a microbial group. Scientific Reports 7. 10.1038/s41598-017-09472-ySuche in Google Scholar PubMed PubMed Central
Vidal N., Rage J.C., Couloux A. & Hedges S.B. 2009. Snakes (Serpentes), pp. 390–397. In: Hedges S.B. & Kumar S. (eds), The Timetree of Life, Oxford University Press, New York, 572 pp. ISBN: 9780199535033Suche in Google Scholar
Vidlička L., Vršanský P., Kúdelová T., Kúdela M., Deharveng L. & Hain M. 2017. New genus and species of cavernicolous cockroach (Blattaria, Nocticolidae) from Vietnam. Zootaxa 4232 (3): 361–375. 10.11646/zootaxa.4232.3.5Suche in Google Scholar PubMed
Vishnyakova V.N. 1964. Dopolnitel’nye znaki krovenosnykh sosudov na perednikh kryl’yakh novykh tarakanov verchneǐ yury [Additional characters of wing venation in forewings of a new Upper Jurassic cockroach]. Paleontol. J. 1964 (1): 82–87.Suche in Google Scholar
Vishnyakova V.N. 1968. Mezozoǐskie tarakany s naruzhnym yaǐtseladom i osobennosti ikh razmnozhniya (Blattodea) [Mesozoic cockroaches with external ovipositor and peculiarities of their reproduction], pp. 55–86. In: Rohdendorf B.B. (ed.), Yurskie nasekomye Karatau [Jurassic Insects of Karatau], Nauka, Moscow, 252 pp.Suche in Google Scholar
Vishnyakova V.N. 1973. Novye tarakany (Insecta: Blattodea) iz verkhneyurskikh otlozheniǐ khrebta Karatau [New cockroaches (Insecta: Blattodea) from the Upper Jurassic of Karatau mountains ]. Doklady na 24. Jezhegodnom chtenii pamyati N.A. Kholodkowskogo, pp. 64–77.Suche in Google Scholar
Vishnyakova V.N. 1998. Tarakany (Insecta, Blattodea) iz triasovogo mestonakhozhdeniya Madygen, Srednyaya Aziya [Cockroaches (Insecta, Blattodea) from the Triassic of the Madygen, Central Asia], Paleontol. Zh. 5: 69–76.Suche in Google Scholar
Visscher H., Looy C.V., Collinson M.E., Brinkhuis H., van Konijnenburg-van Cittert J.H.A., Kürschner W.M. & Sephton M.A. 2004. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl. Acad. Sci. USA 101 (35): 12952–12956. 10.1073/pnas.0404472101Suche in Google Scholar PubMed PubMed Central
Vršanský P. 1997. Piniblattella gen. nov. – the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomol. Probl. 28 (1): 67–79.Suche in Google Scholar
Vršanský P. 1999. The Blattaria Fauna of the Lower Cretaceous of Baissa in Transbaikalian Siberia. Diploma Thesis, Comenius University, Bratislava.Suche in Google Scholar
Vršanský P. 2000. Decreasing variability – from the Carboniferous to the Present! (Validated on Independent Lineages of Blattaria). Paleontol. J. 34 (Suppl. 3): 374–379.Suche in Google Scholar
Vršanský P. 2002. Origin and the Early Evolution of Mantises. Amba Projekty 6: 1–16.Suche in Google Scholar
Vršanský P. 2003a. Unique assemblage of Dictyoptera (Insecta-Blattaria, Mantodea, Isoptera, Mantodea) from the Lower Cretaceous of Bon Tsagaan Nuur in Mongolia. Entomol. Probl. 33 (1–2): 119–151.Suche in Google Scholar
Vršanský P. 2003b. Umenocoleoidea – an amazing lineage of aberrant insects (Insecta, Blattaria). Amba Projekty 7 (1): 1–32.Suche in Google Scholar
Vršanský P. 2004. Transitional Jurassic/Cretaceous cockroach assemblage (Insecta, Blattaria) from the Shar-Teg in Mongolia. Geol. Carpath. 55 (6): 457–468.Suche in Google Scholar
Vršanský P. 2005. Mass mutations of insects at the Jurassic/Cretaceous boundary? Geol. Carpath. 56 (6): 473–781.Suche in Google Scholar
Vršanský P. 2008. New blattarians and a review of dictyopteran assemblages from the Lower Cretaceous of Mongolia. Acta Palaeontol. Pol. 53 (1): 129–136. 10.4202/app.2008.0109Suche in Google Scholar
Vršanský P. 2009. Albian cockroaches (Insecta, Blattida) from French amber of Archingeay. Geodiversitas 31 (1): 73–98. 10.5252/g2009n1a7Suche in Google Scholar
Vršanský P. 2010. Cockroach as the earliest eusocial animal. Acta. Geol. Sin. – Engl. Ed. 84 (4): 793–808. 10.1111/j.1755-6724.2010.00261.xSuche in Google Scholar
Vršanský P. & Ansorge J. 2007. Lower Jurassic cockroaches (Insecta: Blattaria) from Germany and England. Afr. Invertebr. 48 (1): 103–126.Suche in Google Scholar
Vršanský P. & Aristov D. 2012. Enigmatic Late Permian cockroaches from Isady, Russia (Blattida: Mutoviidae fam. n.). Zootaxa 3247: 19–31. 10.5281/zenodo.213150Suche in Google Scholar
Vršanský P. & Aristov D. 2014. Termites from the Jurassic/Cretaceous boundary; evidence for the longevity of their earliest genera. Eur. J. Entomol. 111 (1): 137–141. 10.14411/eje.2014.014Suche in Google Scholar
Vršanský P. & Bechly G.N. 2015. New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber. Geol. Carpath. 66 (2): 133–138. 10.1515/geoca-2015-0015Suche in Google Scholar
Vršanský P., Cifuentes-Ruiz P., Vidlička L., Ciampor F. Jr. & Vega F.J. 2011. Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geol. Carpath. 62 (5): 463–475. 10.2478/v10096-011-0033-8Suche in Google Scholar
Vršanský P., Liang J.-H. & Ren D. 2009. Advanced morphology and behaviour of extinct earwig-like cockroaches (Blattida: Fuziidae). Geol. Carpath. 60 (6): 449–462. 10.2478/v10096-009-0033-0Suche in Google Scholar
Vršanský P., Liang J.-H. & Ren D. 2012. Malformed cockroach (Insecta: Blattida: Liberiblattinidae) from the Middle Jurassic of Daohugou in Inner Mongolia, China. Orient. Insects 46 (1): 12–18. 10.1080/00305316.2012.675482Suche in Google Scholar
Vršanský P. & Makhoul E. 2013. Mieroblattina pacis gen. et sp. n. – Upper Cretaceous cockroach (Blattida: Mesoblattinidae) from Nammoura limestone of Lebanon, pp. 167–172. In: Azar D., Engel M., Jarzembowski E., Krogmann L., Nel A. & Santiago-Blay J. (eds), Insect Evolution in an Ambiferous and Stone Alphabet, Proceedings of the 6th International Congress on Fossil Insects, Arthropods and Amber, Brill, Leiden, 210 pp. ISBN13: 978900421070710.1163/9789004210714_012Suche in Google Scholar
Vršanský P., Oružinský R., Barna P., Vidlička L. & Labandeira C. 2014. Native Ectobius (Blattaria: Ectobiidae) from the Early Eocene Green River formation of Colorado and its reintroduction to North America 49 million years later. Ann. Am. Entomol. Soc. 107 (1): 28–36. 10.1603/AN13042Suche in Google Scholar
Vršanský P.V., Šmídová L., Valaška D., Barna P., Vidlička L., Takáč P., Pavlik L., Kúdelová T., Karim T.S., Zelagin D. & Smith D. 2016. Origin of origami cockroach reveals long-lasting (11 Ma) phenotype instability following viviparity. Sci. Nat. 103 (9-10): 78. 10.1007/s00114-016-1398-4Suche in Google Scholar PubMed
Vršanský P., Van de Kamp T., Azar D., Prokin A., Vidlička L. & Vagovič P. 2013. Cockroaches probably cleaned up after dinosaurs. PLoS One 8 (12): e80560. 10.1371/journal.pone.0080560Suche in Google Scholar PubMed PubMed Central
Vršanský P., Vidlička L’., Barna P., Bugdaeva Z. & Markevich V. 2013. Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. Zootaxa 3635 (2): 117–126. 10.11646/zootaxa.3625.2.2Suche in Google Scholar
Vršanský P., Vidlička L., Čiampor F. Jr. & Marsh F. 2012. Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Sci. 19 (2): 143–152. 10.1111/j.1744-7917.2010.01390.xSuche in Google Scholar
Waddington C.H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563–565. 10.1038/150563a0Suche in Google Scholar
Waddington C.H. 1959. Canalization of development and genetic assimilation of acquired characters. Nature 183: 1654–1655. 10.1038/1831654a0Suche in Google Scholar PubMed
Wang C.C., Wang Z.Q. & Che Y.L. 2016. Protagonista lugubris, a cockroach species new to China and its contribution to the revision of genus Protagonista, with notes on the taxonomy of Archiblattinae (Blattodea, Blattidae). ZooKeys 574: 57–73. 10.3897/zookeys.574.7111Suche in Google Scholar PubMed PubMed Central
Wang C.D. 2013. Nuurcala obesa sp. n. (Blattida, Caloblattinidae) from the Lower Cretaceous Yixian Formation in Liaoning Province, China. Zookeys 318: 35–46. 10.3897/zookeys.318.5514Suche in Google Scholar PubMed PubMed Central
Wang T.-T., Liang J.-H. & Ren D. 2007a. Variability of Habroblattula drepanoides gen. et. sp. nov. (Insecta: Blattaria: Blattulidae) from the Yixian Formation in Liaoning, China. Zootaxa 1443: 17–27. 10.5281/zenodo.176061Suche in Google Scholar
Wang T.-T., Liang J.-H., Ren D. & Shi C. 2007b. New Mesozoic cockroaches (Blattaria: Blattulidae) from Jehol Biota of western Liaoning in China. Ann. Zool. 57 (3): 483–495.Suche in Google Scholar
Wang X., Shi Y., Wang Z. & Che Y. 2014a. Revision of the genus Salganea Stål (Blattodea, Blaberidae, Panesthiinae) from China, with descriptions of three new species. ZooKeys 412: 59–87. 10.3897/zookeys.412.7134Suche in Google Scholar PubMed PubMed Central
Wang X.D., Wang Z.G. & Che Y.L. 2014b. A taxonomic study of the genus Panesthia (Blattodea, Blaberidae, Panesthiinae) from China with descriptions of one new species, one new subspecies and the male of Panesthia antennata. ZooKeys 466: 53–75. 10.3897/zookeys.466.8111Suche in Google Scholar
Wang Y., Ren D. & Shih C. 2007c. New discovery of Palaeontinid fossils from the Middle Jurassic in Daohugou, Inner Mongolia (Homoptera, Palaeontinidae). Science in China Series D: Earth Sciences 50 (4): 481–486 10.1007/s11430-007-0029-5Suche in Google Scholar
Wang Z.Q. & Che Y.L. 2013. Three new species of cockroach genus Symploce Hebard, 1916 (Blattodea, Ectobiidae, Blattellinae) with redescriptions of two known species based on types from Mainland China. ZooKeys 337: 1–18. 10.3897/zookeys.337.5770Suche in Google Scholar
Webster M. 2007. A Cambrian peak in morphological variation within trilobite species. Science 317: 499–502. 10.1126/science.1142964Suche in Google Scholar
Wei T.T. & Ren D. 2013. Completely preserved cockroaches of the family Mesoblattinidae from J/K Yixian Formation, China. Geol. Carpath. 64 (4): 291–304. 10.2478/geoca-2013-0021Suche in Google Scholar
Weissert H. & Mohr H. 1996. Late Jurassic climate and its impact on carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 122 (1-4): 27–43. 10.1016/0031-0182(95)00088-7Suche in Google Scholar
Weterings E. & Chen D.J. 2008. The endless tale of nonhomologous end-joining. Cell Res. 18 (1): 114–124. 10.1038/cr.2008.3Suche in Google Scholar PubMed
Willis K.J., Bennett K.D. & Birks H.J.B. 2009. Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. J. Biogeogr. 36 (9): 1630–1644. 10.1111/j.1365-2699.2009.02102.xSuche in Google Scholar
Winterton S.L. 2006. Aberrant wing venation in the green lacewing Apochrysa lutea (Walker) (Neuroptera : Chrysopidae : Apochrysinae). Austral. Entomol. 33 (3): 143–146.Suche in Google Scholar
Yang W. & Li S.G. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos 102 (1-2): 88–117. 10.1016/j.lithos.2007.09.018Suche in Google Scholar
Yang W., Li S.G. & Jiang B.Y. 2007. New evidence for Cretaceous age of the feathered dinosaurs of Liaoning: zircon U-PbSHRIMP dating of the Yixian Formation in Sihetun, northeast China. Cretaceous Res. 28 (2): 177–182. 10.1016/j.cretres.2006.05.011Suche in Google Scholar
Zhang Z., Schneider J.W. & Hong Y. 2013. The most ancient roach (Blattodea): a new genus and species from the earliest Late Carboniferous (Namurian) of China, with a discussion of the phylomorphogeny of early blattids. J. Syst. Paleontol. 11 (1): 27–40. 10.1080/14772019.2011.634443Suche in Google Scholar
Zherikhin V.V. 1987. Biocoenotic regulation and evolution. Paleontol. J. 21 (1): 12–19.Suche in Google Scholar
Zherikhin V.V., Mostovski M.B., Vrsansky P., Blagoderov V.A. & Lukashevich E.D. 1999. The unique Lower Cretaceous locality Baissa and other contemporaneous fossil insect sites in North and West Transbaikalia, pp. 185–192. In: Vršanský P (ed.), Proc 1st Palaeoentomol Conf, Moscow 1998, Amba projekty, Bratislava.Suche in Google Scholar
Żyła D., Wegierek P., Owocki K. & Niedźwiedzki G. 2013. Insects and crustaceans from the latest Early-early Middle Triassic of Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 371: 136–144. 10.1016/j.palaeo.2013.01.002Suche in Google Scholar
© 2017 Institute of Zoology, Slovak Academy of Sciences
Artikel in diesem Heft
- Cellular and Molecular Biology
- Two nuclei inside a single cardiac muscle cell. More questions than answers about the binucleation of cardiomyocytes
- Cellular and Molecular Biology
- Purification and characterization of α-L-arabinofuranosidases from Geobacillus stearothermophilus strain 12
- Botany
- Impact of vegetation on flow in a lowland stream during the growing season
- Zoology
- Soil moisture distribution mapping in topsoil and its effect on maize yield
- Botany
- Influence of beech and spruce sub-montane forests on snow cover in Poľana Biosphere Reserve
- Botany
- Seedling emergence through soil surface seals under laboratory conditions: effect of mechanical impedance and seal moisture
- Botany
- Overexpression of Arabidopsis ICR1 gene affects vegetative growth and anthesis
- Zoology
- Experimental evidence of the successful invader Orconectes limosus outcompeting the native Astacus leptodactylus in acquiring shelter and food
- Zoology
- Temporary deleterious mass mutations relate to originations of cockroach families
- Zoology
- Dynamics of the bird communities in two fragments of Atlantic Forest in São Paulo, Brazil
- Zoology
- Morpho-metric analysis of the insular and mainland Rattus in Tunisia
- Zoology
- The role of melatonin and carnosine in prevention of oxidative intestinal injury induced by gamma irradiation in rats
- Cellular and Molecular Biology
- Terbufos sulfone aggravates kidney damage in STZ-induced diabetic rats
- Cellular and Molecular Biology
- The in vitro effect of poly (I:C) on cell morphology of a metastatic pharyngeal cell line
- Zoology
- Another climate change induced infiltration? The northernmost record of thermophilous spore-feeding Allothrips pillichellus (Thysanoptera: Phlaeothripidae: Idolothripinae)
- Zoology
- Relict chironomid communities surviving in the coldest High Tatra Mountain lakes confirmed by a palaeolimnological survey
Artikel in diesem Heft
- Cellular and Molecular Biology
- Two nuclei inside a single cardiac muscle cell. More questions than answers about the binucleation of cardiomyocytes
- Cellular and Molecular Biology
- Purification and characterization of α-L-arabinofuranosidases from Geobacillus stearothermophilus strain 12
- Botany
- Impact of vegetation on flow in a lowland stream during the growing season
- Zoology
- Soil moisture distribution mapping in topsoil and its effect on maize yield
- Botany
- Influence of beech and spruce sub-montane forests on snow cover in Poľana Biosphere Reserve
- Botany
- Seedling emergence through soil surface seals under laboratory conditions: effect of mechanical impedance and seal moisture
- Botany
- Overexpression of Arabidopsis ICR1 gene affects vegetative growth and anthesis
- Zoology
- Experimental evidence of the successful invader Orconectes limosus outcompeting the native Astacus leptodactylus in acquiring shelter and food
- Zoology
- Temporary deleterious mass mutations relate to originations of cockroach families
- Zoology
- Dynamics of the bird communities in two fragments of Atlantic Forest in São Paulo, Brazil
- Zoology
- Morpho-metric analysis of the insular and mainland Rattus in Tunisia
- Zoology
- The role of melatonin and carnosine in prevention of oxidative intestinal injury induced by gamma irradiation in rats
- Cellular and Molecular Biology
- Terbufos sulfone aggravates kidney damage in STZ-induced diabetic rats
- Cellular and Molecular Biology
- The in vitro effect of poly (I:C) on cell morphology of a metastatic pharyngeal cell line
- Zoology
- Another climate change induced infiltration? The northernmost record of thermophilous spore-feeding Allothrips pillichellus (Thysanoptera: Phlaeothripidae: Idolothripinae)
- Zoology
- Relict chironomid communities surviving in the coldest High Tatra Mountain lakes confirmed by a palaeolimnological survey