Abstract
The effects of increasing concentrations of cadmium (Cd) on the ultrastructure, Cd accumulation, nutrient elements contents, levels of chlorophyll pigments, hydrogen peroxide (H2O2), malondialdehyde (MDA), antioxidants, as well as the activities of antioxidant enzymes were investigated in the leaves of Hydrocharis dubia (Bl.) Backer. Cd exposure resulted in significant damage in chloroplasts and mitochondria, suggesting that Cd hastened the senescence of the tested plants. The accumulation of Cd was found to increase in a concentration dependent manner with a maximum of 1088 μg g−1 at 80 μM. The levels of Ca, P and Cu declined and the levels of Mg increased under all Cd concentrations, but K and Fe contents increased initially and decreased thereafter. Pigment content decreased with the rise of the Cd concentrations. H2O2 content enhanced gradually at all Cd concentrations. MDA content increased progressively up to 60 μM Cd, followed by a decline at higher concentration. The effect of Cd application on ascorbate (AsA) and reduced glutathione (GSH) contents was similar to that seen for H2O2 content. Peroxidase (POD) and catalase (CAT) activities first increased and then decreased, while superoxide dismutase (SOD) activity markedly decreased. Results suggest that Cd-induced oxidative damage in H. dubia is closely associated with the efficiency of its intrinsic antioxidant mechanisms, both the disorder of nutrient elements and the damage to the ultrastructure were indicative of general disarray in the cellular functions exerted by Cd.
Acknowledgements
The research was supported in part by the grant from Jiangsu Agricultural Science and Technology Innovation Fund Project (No.CX(16)1035).
References
Alscher R.G., Erturk N. & Heath L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331–1341.10.1093/jexbot/53.372.1331Suche in Google Scholar
Anderson M.E. 1985. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113: 545–548.10.1016/S0076-6879(85)13073-9Suche in Google Scholar
Austin J.R., Frost E., Vidi P.A., Kessler F. & Stehelin L. 2006. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18: 1693–1703.10.1105/tpc.105.039859Suche in Google Scholar
Benavides M.P., Gallego S.M. & Tomaro M.L. 2005. Cadmium toxicity in plants. Braz. J. Plant Physiol. 17: 21–34.10.1590/S1677-04202005000100003Suche in Google Scholar
Chaoui A., Mazhoudi S., Ghorbal M.H. & Ferjana E.E. 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 127: 139–147.10.1016/S0168-9452(97)00115-5Suche in Google Scholar
Ding B.Z., Shi G.X., Xu Y., Hu J.Z. & Xu Q.S. 2007. Physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to cadmium stress. Environ. Pollut. 147: 800–803.10.1016/j.envpol.2006.10.016Suche in Google Scholar PubMed
Dong J., Wu F.B. & Zhang G.P. 2006. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64: 1659–1666.10.1016/j.chemosphere.2006.01.030Suche in Google Scholar PubMed
Douchiche O., Soret-Morvan O., Chadbi W., Morvan C. & Paynel F. 2010. Characteristics of cadmium tolerance in ‘Hermes’ flax seedlings: contribution of cell walls. Chemosphere 81: 1430–1436.10.1016/j.chemosphere.2010.09.011Suche in Google Scholar PubMed
Elloumi N., Zouari M., Chaari L., Jomni C., BenRouina B. & BenAbdallah F. 2014. Ecophysiological responses of almond (Prunus dulcis) seedlings to cadmium stress. Biologia 69: 604–609.10.2478/s11756-014-0348-xSuche in Google Scholar
Fatima R.A. & Ahmad M. 2005. Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci. Total Environ. 346: 256–273.10.1016/j.scitotenv.2004.12.004Suche in Google Scholar PubMed
Foyer C.H. & Noctor G. 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866–1875.10.1105/tpc.105.033589Suche in Google Scholar
Ghnaya T., Slama I., Messedi D., Grignon C., Ghorbel M.H. & Abdelly C. 2007. Effects of Cd2+ on K+, Ca2+ and N Uptake in Two Halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: Consequences on Growth. Chemosphere 67: 72–79.10.1016/j.chemosphere.2006.09.064Suche in Google Scholar
Góth L. 1991. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 196: 143–152.10.1016/0009-8981(91)90067-MSuche in Google Scholar
Groppa M.D., Tomaro M.L. & Benavides M.P. 2001. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci. 161: 481–488.10.1016/S0168-9452(01)00432-0Suche in Google Scholar
Khan S. Chao C., Waqas M., Arp H.P.H. & Zhu Y.G. 2013. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ. Sci. Technol. 47: 8624–8632.10.1021/es400554xSuche in Google Scholar
Law M.Y., Charles S.A. & Halliwell B. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem. J. 210: 899–903.10.1042/bj2100899Suche in Google Scholar
Liang T.S., Ding H., Wang G.D., Kang J.Q., Pang H.X. & Lv J.Y. 2016. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Ecotox. Environ. Safe 124: 129–137.10.1016/j.ecoenv.2015.10.011Suche in Google Scholar
Lichtenthaler H.K. 1987. Chlorophylls and Carotenoids: Pigments of Photosynthetic Membranes. Methods Enzymol. 148: 350–382.10.1016/0076-6879(87)48036-1Suche in Google Scholar
Liu Y.G., Wang X., Zeng G.M., Qu D., Gu J.J., Zhou M. & Chai L.Y. 2007. Cadmium-induced oxidative stress and response of the ascorbate–glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere 69: 99–107.10.1016/j.chemosphere.2007.04.040Suche in Google Scholar PubMed
Liu Z.L., He X.Y., & Chen W. 2011. Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb. Ecotoxicology 20: 698–705.10.1007/s10646-011-0609-1Suche in Google Scholar PubMed
Maehly A.C. 1955. Plant peroxidase. Methods Enzymol 2: 801–813.10.1016/S0076-6879(55)02307-0Suche in Google Scholar
Mishra S., Srivastava S., Tripathi R.D., Govindarajan R., Kuriakose S.V. & Prasad M.N.V. 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol. Biochem. 44: 25–37.10.1016/j.plaphy.2006.01.007Suche in Google Scholar PubMed
Monteiro M.S., Santos C., Soares A.M.V.M. & Mann R.M. 2009. Assessment of biomarkers of cadmium stress in lettuce. Ecotox. Environ. Safe 7: 811–818.10.1016/j.ecoenv.2008.08.002Suche in Google Scholar PubMed
Mobin M. & Khan N.A. 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J. Plant Physiol. 164: 601–610.10.1016/j.jplph.2006.03.003Suche in Google Scholar PubMed
Parmar P., Kumari N. & Sharma V. 2013. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot. Stud. 54: 45.10.1186/1999-3110-54-45Suche in Google Scholar PubMed PubMed Central
Singh S., Eapen S. & D’Souza S.F. 2006. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62: 233–246.10.1016/j.chemosphere.2005.05.017Suche in Google Scholar PubMed
Srivastava S., Tripathi R.D. & Dwivedi U.N. 2004. Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa - An angiospermic parasite. J. Plant Physiol. 161: 665–674.10.1078/0176-1617-01274Suche in Google Scholar PubMed
Stewert R.C. & Bewley J.D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 65: 45–248.10.1104/pp.65.2.245Suche in Google Scholar PubMed PubMed Central
Sun Q., Ye Z.H., Wang X.R. & Wong M.H. 2007. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J. Plant Physiol. 164: 1489–1498.10.1016/j.jplph.2006.10.001Suche in Google Scholar PubMed
Szőllősi R., Varga I.S., Erdei L. & Mihalik E.B. 2009. Cadmiuminduced oxidative stress and antioxidative mechanisms in germinating Indian mustard (Brassica juncea L.) seeds. Ecotox. Environ. Safe 72: 1337–1342.10.1016/j.ecoenv.2009.04.005Suche in Google Scholar PubMed
Wang X., Shi G.X., Xu Q.S. & Hu J.Z. 2007. Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J. Plant Physiol. 164: 1062–1070.10.1016/j.jplph.2006.06.003Suche in Google Scholar PubMed
Xu Q.S., Hu J.Z., Xie K.B., Yang H.Y., Du K.H. & Shi G.X. 2010. Accumulation and acute toxicity of silver in Potamogeton crispus L. J. Hazard Mater. 173: 186–193.10.1016/j.jhazmat.2009.08.067Suche in Google Scholar PubMed
© 2017 Institute of Botany, Slovak Academy of Sciences
Artikel in diesem Heft
- Botany
- Allelopathy: An overview from micro- to macroscopic organisms, from cells to environments, and the perspectives in a climate-changing world
- Cellular and Molecular Biology
- Prospecting soil bacteria from subtropical Brazil for hydrolases production
- Cellular and Molecular Biology
- Yield improvement of the king oyster mushroom, Pleurotus eryngii, by transformation of its cellulase gene
- Botany
- Accumulation and physiological response of cadmium in Hydrocharis dubia
- Botany
- Development of an efficient Agrobacterium mediated transformation system for chickpea (Cicer arietinum)
- Botany
- Distribution and ecology of high-mountain Solidago minuta (Asteraceae) in Poland
- Zoology
- Ecology of moss-dwelling rotifers in a raised bog: Differentiation of rotifer communities in microhabitats
- Zoology
- Harvestmen (Opiliones) communities in an arboretum: Influence of tree species
- Zoology
- A crossover design to assess feeding preferences in terrestrial isopods: A case study in a Mediterranean species
- Zoology
- Ecology-based mapping of mosquito breeding sites for area-minimized BTI treatments
- Zoology
- Does the invasion of Northern Red Oak Quercus rubra in parkland influence the diversity of birds?
- Zoology
- Prevalence of dorsal notch and variations in the foramen magnum shape in dogs of different breeds and morphotypes
- Cellular and Molecular Biology
- Low density lipoprotein increases amyloid precursor protein processing to amyloidogenic pathway in differentiated SH-SY5Y cells
Artikel in diesem Heft
- Botany
- Allelopathy: An overview from micro- to macroscopic organisms, from cells to environments, and the perspectives in a climate-changing world
- Cellular and Molecular Biology
- Prospecting soil bacteria from subtropical Brazil for hydrolases production
- Cellular and Molecular Biology
- Yield improvement of the king oyster mushroom, Pleurotus eryngii, by transformation of its cellulase gene
- Botany
- Accumulation and physiological response of cadmium in Hydrocharis dubia
- Botany
- Development of an efficient Agrobacterium mediated transformation system for chickpea (Cicer arietinum)
- Botany
- Distribution and ecology of high-mountain Solidago minuta (Asteraceae) in Poland
- Zoology
- Ecology of moss-dwelling rotifers in a raised bog: Differentiation of rotifer communities in microhabitats
- Zoology
- Harvestmen (Opiliones) communities in an arboretum: Influence of tree species
- Zoology
- A crossover design to assess feeding preferences in terrestrial isopods: A case study in a Mediterranean species
- Zoology
- Ecology-based mapping of mosquito breeding sites for area-minimized BTI treatments
- Zoology
- Does the invasion of Northern Red Oak Quercus rubra in parkland influence the diversity of birds?
- Zoology
- Prevalence of dorsal notch and variations in the foramen magnum shape in dogs of different breeds and morphotypes
- Cellular and Molecular Biology
- Low density lipoprotein increases amyloid precursor protein processing to amyloidogenic pathway in differentiated SH-SY5Y cells