Home Prospecting soil bacteria from subtropical Brazil for hydrolases production
Article
Licensed
Unlicensed Requires Authentication

Prospecting soil bacteria from subtropical Brazil for hydrolases production

  • Caroline T. De Oliveira , Jamile Q. Pereira , Adriano Brandelli and Daniel J. Daroit EMAIL logo
Published/Copyright: February 28, 2017
Become an author with De Gruyter Brill

Abstract

Eighteen bacterial strains were isolated from soil of an urban area located in a transition zone between the Atlantic Forest and Pampa biomes, in southern Brazil. These strains were screened for cellulolytic, lipolytic and proteolytic potentials. Eleven isolates (61%) were able to produce cellulolytic enzymes on carboxymethylcellulose (CMC) agar plates, 14 isolates (78%) were proteolytic on skim milk agar plates, and all isolates demonstrated lipolytic/esterolytic potential on tributyrin agar (TBA) plates. From the 18 bacteria, nine (50%) were shown to produce the three investigated enzyme activities. Selected isolates were then evaluated for growth and enzyme production at different conditions of temperature and pH on CMC agar, TBA, and feather meal agar plates. As a general trend, growth and hydrolysis zones were observed at pH 6.0–9.0 and 30–37C. Sequencing of 16S rRNA gene fragments indicated that 10 isolates belonged to the genus Bacillus, three to Lysinibacillus genus, and the remaining isolates were representatives of Serratia, Phyllobacterium, Paenibacillus, Acinetobacter, and Curtobacterium. The isolate Bacillus sp. CL18 displayed competence for feather degradation when cultured in mineral medium (30C, pH 7.0) containing a single feather as the only organic substrate. Results from bioprospection indicate the functional versatility of the bacterial isolates, which might be of significance from both ecological and biotechnological perspectives.


*Electronic supplementary material. The online version of this article (DOI: 10.1515/biolog-2017-0025) contains supplementary material, which is available to authorized users.


Acknowledgements

C.T. Oliveira and D.J. Daroit thank Programa Institucional de Iniciação Científica e Tecnológica (PRO-ICT/UFFS), and Programa Institucional de Bolsas de Iniciaçăo Científica (PROBIC/FAPERGS/UFFS).

References

Altieri M.A. 1999. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 74: 19–31.10.1016/B978-0-444-50019-9.50005-4Search in Google Scholar

Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.10.1016/S0022-2836(05)80360-2Search in Google Scholar

Bach E., Cannavan F.S., Duarte F.R.S., Taffarel J.A.S., Tsai S.M. & Brandelli A. 2011. Characterization of feather-degrading bacteria from Brazilian soils. Int. Biodeterior. Biodegrad. 65: 102–107.10.1016/j.ibiod.2010.07.005Search in Google Scholar

Benson D.A., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2014. GenBank. Nucleic Acids Res 42: D32– D37.10.1093/nar/gkt1030Search in Google Scholar PubMed PubMed Central

Brandelli A., Daroit D.J. & Riffel A. 2010. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85: 1735–1750.10.1007/s00253-009-2398-5Search in Google Scholar PubMed

Bruce T., Martinez I.B., Maia Neto O., Vicente A.C.P., Kruger R.H. & Thompson F.L. 2010. Bacterial community diversity in the Brazilian Atlantic Forest soils. Microb. Ecol. 60: 840– 849.10.1007/s00248-010-9750-2Search in Google Scholar PubMed

Bruce T., Castro A., Kruger R., Thompson C.C. & Thompson F.L. 2012. Microbial diversity of Brazilian biomes, pp. 217– 247. In: Nelson K.E. & Jones-Nelson B. (eds), Genomics Applications for the Developing World, Springer, New York.10.1007/978-1-4614-2182-5_13Search in Google Scholar

Burns R.G., DeForest J.L., Marxsen J., Sinsabaugh R.L., Stromberger M.E., Wallenstein M.D., Weintrau, M.N. & Zoppini Z. 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol. Biochem. 58: 216– 234.10.1016/j.soilbio.2012.11.009Search in Google Scholar

Castro R.A., Quecine M.C., Lacava P.T., Batista B.D., Luvizotto D.M., Marcon J., Ferreira A., Melo I.S. & Azevedo J.L. 2014. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. SpringerPlus 3: 382.10.1186/2193-1801-3-382Search in Google Scholar PubMed PubMed Central

Chaiharn M. & Lumyong S. 2009. Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. World J. Microbiol. Biotechnol. 25: 305– 314.10.1007/s11274-008-9892-2Search in Google Scholar

Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A. & Young C.C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33–41.10.1016/j.apsoil.2005.12.002Search in Google Scholar

Daroit D.J. & Brandelli A. 2014. A current assessment on the production of bacterial keratinases. Crit. Rev. Biotechnol. 34: 372–384.10.3109/07388551.2013.794768Search in Google Scholar PubMed

Egamberdieva D., Kamilova F., Validov S., Gafurova L., Kucharova Z. & Lugtenberg B. 2008. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 10: 1–9.10.1111/j.1462-2920.2007.01424.xSearch in Google Scholar PubMed

Ertugrul S., Dönmez G. & Takaç S. 2007. Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. J. Hazard. Mater. 149: 720–724.10.1016/j.jhazmat.2007.04.034Search in Google Scholar PubMed

Gagne-Bourgue F., Aliferis K.A., Seguin P., Rani M., Samson R. & Jabaji S. 2012. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J. Appl. Microbiol. 114: 836–853.10.1111/jam.12088Search in Google Scholar PubMed

Ghosh A., Maity B., Chakrabarti K. & Chattopadhyay D. 2007. Bacterial diversity of East Calcutta wet land area: possible identification of potential bacterial population for different biotechnological uses. Microb. Ecol. 54: 452–459.10.1007/s00248-007-9244-zSearch in Google Scholar PubMed

Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.Search in Google Scholar

Hasan F., Shah A.A. & Hameed A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 235–251.10.1016/j.enzmictec.2005.10.016Search in Google Scholar

Herranen M., Kariluoto S., Edelmann M., Piironen V., Ahvenniemi K., Iivonen V., Salovaara H. & Korhola M. 2010. Isolation and characterization of folate-producing bacteria from oat bran and rye flakes. Int. J. Food Microbiol. 142: 277–285.10.1016/j.ijfoodmicro.2010.07.002Search in Google Scholar PubMed

Kasana R.C., Salwan R., Dhar H., Dutt S. & Gulati A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr. Microbiol. 57: 503–507.10.1007/s00284-008-9276-8Search in Google Scholar PubMed

Kasana R.C., Salwan R. & Yadav S.K. 2011. Microbial proteases: detection, production, and genetic improvement. Crit. Rev. Microbiol. 37: 262–276.10.3109/1040841X.2011.577029Search in Google Scholar PubMed

Kim D., Baik K.S., Kim M.S., Park S.C., Kim S.S., Rhee M.S. Kwak Y.S. & Seong C.N. 2008. Acinetobacter soli sp. nov., isolated from forest soil. J. Microbiol. 46: 396–401.10.1007/s12275-008-0118-ySearch in Google Scholar PubMed

Kumar G., Kanaujia N. & Bafana A. 2012. Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol. Res. 167: 220–225.10.1016/j.micres.2011.09.001Search in Google Scholar PubMed

Li L., Sinkko H., Montonen L., Wei G., Lindström K. & Räsänen L.A. 2012. Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbiol. Ecol. 79: 46–68.10.1111/j.1574-6941.2011.01198.xSearch in Google Scholar PubMed

Liang Y.L., Zhang Z., Wu M., Wu U. & Feng J.X. 2014. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Res. Int. 2014: 512497.10.1155/2014/512497Search in Google Scholar PubMed PubMed Central

Lin L., Kan X., Yan H. & Wang D. 2012. Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains. Electron. J. Biotechnol. 15: 10.2225/vol15-issue3-fulltext-1.Search in Google Scholar

Lo Y.C., Lu W.C., Chen C.Y., Chen W.M. & Chang J.S. 2010. Characterization and high-level production of xylanase from an indigenous cellulolytic bacterium Acinetobacter junii F6-02 from southern Taiwan soil. Biochem. Eng. J. 53: 77–84.10.1016/j.bej.2010.09.011Search in Google Scholar

Lupatini M., Suleiman A.K.A., Jacques R.J.S., Antoniolli Z.I., Kuramae E.E., Camargo F.A.O. & Roesch L.F.W. 2013. Soilborne bacterial structure and diversity does not reflect community activity in Pampa biome. PLoS One 8: e76465.10.1371/journal.pone.0076465Search in Google Scholar PubMed PubMed Central

Lyngwi N.A., Koijam K., Sharma D. & Joshi S.R. 2013. Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya. Rev. Biol. Trop . 61: 467–490.10.15517/rbt.v61i1.11141Search in Google Scholar PubMed

Maki M., Leung K.T. & Qin W. 2009. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5: 500–516.10.7150/ijbs.5.500Search in Google Scholar PubMed PubMed Central

Mazzucotelli C.A., Ponce A.G., Kotlar C.E. & Moreira M.R. 2013. Isolation and characterization of bacterial strains with a hydrolytic profile with potential use in bioconversion of agroindustrial by-products and waste. Food Sci. Technol. 33: 295–303.10.1590/S0101-20612013005000038Search in Google Scholar

Overbeck G.E., Müller S.C., Fidelis A., Pfadenhauer J., Pillar V.D., Blanco C.C., Boldrini I.I., Both R. & Forneck E.D. 2007. Brazil’s neglected biome: the South Brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 9: 101–116.10.1016/j.ppees.2007.07.005Search in Google Scholar

Pajni S., Dhillon N., Vadehra D.V. & Sharma P. 1989. Carboxymethyl cellulase, β-glucosidase and xylanase production by Bacillus isolates from soil. Int. Biodeterior. 25: 1–5.10.1016/0265-3036(89)90022-5Search in Google Scholar

Pandey S., Singh S., Yadav A.N., Nain L. & Saxena A.K. 2013. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci. Biotechnol. Biochem. 77: 1474– 1480.10.1271/bbb.130121Search in Google Scholar PubMed

Qian C.D., Liu T.Z., Zhou S.L., Ding R., Zhao W.P., Li O. & Wu X.C. 2012. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii. BMC Microbiol. 12: 197.10.1186/1471-2180-12-197Search in Google Scholar PubMed PubMed Central

Rieger T.J., Oliveira C.T., Pereira J.Q., Brandelli A. & Daroit D.J. 2017. Proteolytic system of Bacillus sp. CL18 capable of extensive feather degradation and hydrolysis of diverse protein substrates. Br. Poult. Sci. 10.1080/00071668.2017.1293229.Search in Google Scholar PubMed

Robledo M., Jiménez-Zurdo J.I., Velázquez E., Trujillo M.E., Zurdo-Pińeiro J.L., Ramírez-Bahena M.H., Ramos B., Díaz-Mínguez J.M., Dazzo F., Martínez-Molina E. & Mateos P.F. 2008. Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proc. Natl. Acad. Sci. USA 105: 7064–7069.10.1073/pnas.0802547105Search in Google Scholar PubMed PubMed Central

Rogers S.O. & Bendich A.J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5: 69–76.10.1007/BF00020088Search in Google Scholar PubMed

Sanchez S. & Demain A.L. 2011. Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org. Process Res. Dev. 15: 224–230.10.1021/op100302xSearch in Google Scholar

Sgroy V., Cassán F., Masciarelli O., Del Papa M.F., Lagares A. & Luna V. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol. 85: 371–381.10.1007/s00253-009-2116-3Search in Google Scholar PubMed

Shil R.K., Mojumder S., Sadida F.F., Uddin M. & Sikdar D. 2014. Isolation and identification of cellulolytic bacteria from the gut of three phytophagus insect species. Braz. Arch. Biol. Technol . 57: 927–932.10.1590/S1516-8913201402620Search in Google Scholar

Souza A.R.C., Baldoni D.B., Lima J., Porto V., Marcuz C., Machado C., Ferraz R.C., Kuhn R.C., Jacques R.J.S., Guedes J.V.C. & Mazutti M.A. 2017. Selection, isolation, and identification of fungi for bioherbicide production. Braz. J. Microbiol. 48: 101–108.10.1016/j.bjm.2016.09.004Search in Google Scholar

Sun Y. & Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11.10.1016/S0960-8524(01)00212-7Search in Google Scholar

Tallur P.N., Sajjan D.B., Mulla S.I., Talwar M.P., Pragasam A., Nayak V.M., Ninnekar H.Z. & Bhatet S.S. 2016. Characterization of antibiotic resistant and enzyme producing bacterial strains isolated from the Arabian Sea. 3 Biotech 6: 28.10.1007/s13205-015-0332-3Search in Google Scholar PubMed PubMed Central

Tang W.L. & Zhao H. 2009. Industrial biotechnology: tools and applications. Biotechnol. J. 4: 1725–1739.10.1002/biot.200900127Search in Google Scholar PubMed

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 15: 4876–4882.10.1093/nar/25.24.4876Search in Google Scholar PubMed PubMed Central

Vaz-Moreira I., Figueira V., Lopes A.R., Pukall R., Spröer C., Schumann P., Nunes O.C. & Manaia C.M. 2010. Paenibacillus residui sp. nov., isolated from urban waste compost. Int. J. Syst. Evol. Microbiol. 60: 2415–2419.10.1099/ijs.0.014290-0Search in Google Scholar PubMed

Vilain S., Luo Y., Hildreth M.B. & Brözel V.S. 2006. Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl. Environ. Microbiol. 72: 4970– 4977.10.1128/AEM.03076-05Search in Google Scholar PubMed PubMed Central

Xu S.J. & Kim B.S. 2014. Biocontrol of fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology 42: 158–166.10.5941/MYCO.2014.42.2.158Search in Google Scholar PubMed PubMed Central

Yadav S., Kaushik R., Saxena A.K. & Arora DK. 2011. Genetic and functional diversity of Bacillus strains in the soils long-term irrigated with paper and pulp mill effluent. J. Gen. Appl. Microbiol. 57: 183–195.10.2323/jgam.57.183Search in Google Scholar PubMed

Yadav A.N., Sachan S.G., Verma P., Kaushik R. & Saxena A.K. 2015. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J. Basic Microbiol. 55: 1–14.10.1002/jobm.201500230Search in Google Scholar PubMed

Abbreviations
CMC

carboxymethylcellulose

CTAB

cetyltrimethylammonium bromide

EDTA

ethylenediaminetetraacetic acid

FMA

feather meal agar

MM

mineral medium

PCA

plate count agar

SMA

skim milk agar

TBA

tributyrin agar

UHT

ultra high temperature

Received: 2017-1-6
Accepted: 2017-2-25
Published Online: 2017-2-28
Published in Print: 2017-2-1

© 2017 Institute of Molecular Biology, Slovak Academy of Sciences

Downloaded on 10.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2017-0025/html
Scroll to top button