Abstract
Radio telemetry is an advanced method for studying movement behaviour which is one of the keys to understanding species ecology and biology. Using this method we studied the movement of Carabus ullrichii Germar, 1824, a large and apterous ground beetle species. Four individuals (one male, three females) were equipped with 0.28 g transmitters and radio-tracked for 10 days in three hour intervals in mosaic rural area; meadow and orchard. We found that maximum distance covered by an individual during this period was 120.9 m and C. ullrichii travelling speed in such habitat ranged from 1.69 to 13.43 m per day. Our preliminary results indicate that diurnal activity of this species is not affected by light conditions but by temperature. Beetles were most active at temperatures 15.0–17.4°C. Here we provide the first study of the movement ability of this species.
Acknowledgements
We thank to Jirí Korabecný and Karel Páleník for field assistance, Michal Hykel for help with analysis and comments and Daniel Hanley for linguistic corrections. We also thank to three anonymous reviewers for constructive advice and comments on the manuscript. The research was founded by Internal Grant Agency of Palacký University (IGA_PrF_2015_018).
References
Andorkó R. 2014. Studies on carabid assemblages and life-history characteristics of two Carabus (Coleoptera, Carabidae) species. Ph.D. thesis. Faculty of Sciences, Eötvös Loránd University, Budapest, 97 pp.Suche in Google Scholar
Baars M.A. 1979. Patterns of movement of radioactive carabid beetles. Oecologia 44 (1): 125–140. 10.1007/BF00346411Suche in Google Scholar PubMed
Bates D., Maechler M., Bolker B. & Walker S. 2014. lme4: Linear mixed-effects models using S4 classes. R package version 1.1–7. http://CRAN.R-project.org/package=lme4Suche in Google Scholar
Bérces S. & Elek Z. 2013. Overlapping generations can balance the fluctuations in the activity patterns of an endangered ground beetle species: long-term monitoring of Carabus hungaricus in Hungary. Insect Conserv. Divers. 6: 290–299. 10.1111/j.1752-4598.2012.00218.xSuche in Google Scholar
Bretz F., Hothorn T. & Westfall P. 2010. Multiple Comparisons Using R. Boca Raton, CRC Press, 205 pp. ISBN: 978-1-58488-574-0Suche in Google Scholar
Brouwers N.C. & Newton A.C. 2009. Movement rates of woodland invertebrates: a systematic review of empirical evidence. Insect Conserv. Divers. 2 (1): 10–22. 10.1111/j.1752-4598.2008.00041.xSuche in Google Scholar
Chiari S., Carpaneto G.M., Zauli A., Zirpoli G.M., Audisio P. & Ranius T. 2013. Dispersal patterns of a saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Insect Conserv. Divers. 6 (3): 309–318. 10.1111/j.1752-4598.2012.00215.xSuche in Google Scholar
Firle S., Bommarco R., Ekbom B. & Natiello M. 1998. The influence of movement and resting behaviour on the range of three carabid beetles. Ecology 79 (6): 2113–2122. 10.2307/176714Suche in Google Scholar
Hagen M., Wikelski M. & Kissling W.D. 2011. Space use of bumblebees (Bombus spp.) revealed by radio-tracking. PLoS One 6 (5): e19997. 10.1371/journal.pone.0019997Suche in Google Scholar PubMed PubMed Central
Hedin J., Ranius T., Nilsson S.G. & Smith H.G. 2008. Restricted dispersal in a flying beetle assessed by telemetry. Biodivers. Conserv. 17 (3): 675–684. 10.1007/s10531-007-9299-7Suche in Google Scholar
Holland J.M. & Luff M.L. 2000. The effects of agricultural practices on Carabidae in temperate agroecosystems. Integrated Pest Manage. Rev. 5 (2): 109–129. 10.1023/A:1009619309424Suche in Google Scholar
Hothorn T., Bretz F. & Westfall P. 2008. Simultaneous Inference in General Parametric. Biom J. 50 (3): 346–363. 10.1002/bimj.200810425Suche in Google Scholar PubMed
Hůrka K. 1996. Carabidae of the Czech and Slovak Republics. Kabourek, Zlín, 566 pp. ISBN: 80-901466-2-7Suche in Google Scholar
Hůrka K. 2005. Beetles of the Czech and Slovak Republics. Kabourek, Zlín, 394 pp. ISBN: 8086447111Suche in Google Scholar
Kareiva P. 1990. Population dynamics in spatially complex environments: theory and data. Phil. Trans. R. Soc. Lond. B 330 (1257): 175–190. 10.1098/rstb.1990.0191Suche in Google Scholar
Kawaga Y. & Maeto K. 2009. Spatial population structure of the predatory ground beetle Carabus yaconinus (Coleoptera: Carabidae) in the mixed farmland-woodland satoyama landscape of Japan. Eur. J. Entomol. 106 (3): 385–391. 10.14411/eje.2009.049Suche in Google Scholar
Kennedy P.J. 1994. The distribution and movement of ground beetles in relation to set-aside arable land, pp. 439–444. 10.1007/978–94-017-0968-2_66. In: Desender K., Dufręne M., Loreau M., Luff M.L. & Maelfait, J.P. (eds), Carabid Beetles Ecology and Evolution, Series Entomologica Vol. 51, Kluwer Academic Publisher, Dordrecht, Boston, London, 476 pp. ISBN: 978-90-481-4320-7, 10.1007/978-94-017-0968-2Suche in Google Scholar
Kenward R.E. 2000. A Manual for Wildlife Radio Tagging. Academic Press 2nd ed., San Diego, 311 pp. ISBN-10: 0124042422, ISBN-13: 978-0124042421Suche in Google Scholar
Kissling D.W., Pattemore D.E. & Hagen M. 2014. Challenges and prospects in the telemetry of insects. Biol. Rev. 89: 511–530. 10.1111/brv.12065Suche in Google Scholar
Kotze D.J., Brandmayr P., Casale A., Dauffy-Richard E., Dekoninck W., Koivula M.J., Lövei G.L., Mossakowski D., Noordijk J., Paarmann W., Pizzolotto R., Saska P., Schwerk A., Serrano J., Szyszko J., Taboada A., Turin H., Venn S., Vermeulen R. & Zetto T. 2011. Forty years of carabid beetle research in Europe – from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation, pp. 55–148. 10.3897/zookeys.100.1523. In: Kotze D.J., Assmann T., Noordijk J., Turin H. & Vermeulen R. (eds), Carabid Beetles as Bioindicators: Biogeographical, Ecological and Environmental Studies, ZooKeys 100 (Special Issue), 573 pp. ISBN: 9789546425904Suche in Google Scholar
Kromp B. 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agr. Ecosyst. Environ. 74 (1-3): 187–228. 10.1016/S0167-8809(99)00037-7Suche in Google Scholar
Levett S. & Walls S. 2011. Tracking the elusive life of the Emperor Dragonfly Anax imperator Leach. J. Br. Dragonfly Soc. 27 (1): 59–68.Suche in Google Scholar
Lorch P.D., Sword G.A., Gwynne D.T. & Anderson G.L. 2005. Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations. Ecol. Entomol. 30 (5): 548–555. 10.1111/j.0307-6946.2005.00725.xSuche in Google Scholar
Lövei G.L., Stringer I., Devine C. & Cartellieri M. 1997. Harmonic radar – a method using inexpensive tags to study invertebrate movement on land. N. Z. J. Ecol. 21 (2): 187–193.Suche in Google Scholar
Lövei G.L. & Sunderland K.D. 1996. Ecology and behaviour of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41: 231–256. 10.1146/annurev.en.41.010196.001 311Suche in Google Scholar
Luff M.L. 1978. Diel activity pattern of some field Carabidae. Ecol. Entomol. 3 (1): 53–62. 10.1111/j.1365-2311.1978.tb00902.xSuche in Google Scholar
Lys J.A. & Nentwig W. 1991. Surface activity of carabid beetles inhabiting cereal fields. Seasonal phenology and the influence of farming operations on five abundant species. Pedobiologia 35 (3): 129–138.Suche in Google Scholar
Niehues F.J., Hockmann P. & Weber F. 1996. Genetics and dynamics of a Carabus auronitens metapopulation in the Westphalian lowlands (Coleoptera, Carabidae). Ann. Zool. Fenn. 33 (1): 85–96.Suche in Google Scholar
Negro M., Casale A., Migliore L., Palestrini C. & Rolando A. 2008. Habitat use and movement patterns in the endangered ground beetle species, Carabus olympiae (Coleoptera: Carabidae). Eur. J. Entomol. 105 (1): 105–112. 10.14411/eje.2008.015Suche in Google Scholar
Pasquet R.M.S., Peltier A., Hufford M.B., Oudin E., Saulnier J., Paul L., Knudsen J.T., Herren H.R. & Gepts P. 2008. Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. USA 105 (36): 13456–13461. 10.1073/pnas.0806040105Suche in Google Scholar PubMed PubMed Central
QGIS Development Team 2015. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.orgSuche in Google Scholar
R Development Core Team 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.orgSuche in Google Scholar
Ranius T. 2006. Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul. Ecol. 48 (3): 177–188. 10.1007/s10144-006-0262-3Suche in Google Scholar
Ranjha H. & Irmler U. 2014. Movement of carabids from grassy strips to crop land in organic agriculture. J. Insect. Conserv. 18 (3): 457–467. 10.1007/s10841-014-9657-1Suche in Google Scholar
Riecken U. & Raths U. 1996. Use of radio telemetry for studying dispersal and habitat use of Carabus coriaceus L. Ann. Zool. Fenn. 33 (1): 109–116.Suche in Google Scholar
Riecken U. & Ries U. 1992. Untersuchung zur raumnutzung von laufkäfern (Col.: Carabidae) mittels radio-telemetrie. Methodenentwicklung und erste Freilandversuche. Z. Ökol. Nat. Schutz. 1: 147–149.Suche in Google Scholar
Rink M. & Sinsch U. 2007. Radio-telemetric monitoring of dispersing stag beetles: implications for conservation. J. Zool. 272 (3): 235–243. 10.1111/j.1469-7998.2006.00282.xSuche in Google Scholar
Svensson G.P., Sahlin U., Brage B. & Larsson M.C. 2011. Should I stay or should I go? Modelling dispersal strategies in saproxylic insects based on pheromone capture and radio telemetry a case study on the threatened hermit beetle Osmoderma eremita. Biodivers. Conserv. 20 (13): 2883–2902. 10.1007/s10531-011-0150-9Suche in Google Scholar
Szyszko J., Gryuntal S. & Schwerk A. 2004. Differences in locomotory activity between male and female Carabus hortensis (Coleoptera: Carabidae) in a pine forest and a beech forest in relation to feeding state. Environ. Entomol. 33: 1442–1446. DOI: 10.1603/0046-225X-33.5.1442Suche in Google Scholar
Szyszko J., Gryuntal S. & Schwerk A. 2005. Nocturnal activity of Carabus hortensis L. (Coleoptera, Carabidae) in two forest sites studied with harmonic radar method. Pol. J. Ecol. 53 (1): 117-222.Suche in Google Scholar
Thiele H.U. 1977. Carabid Beetles in their Environments. Zoophysiology and Ecology Volume 10, Springer Verlag, Berlin, 369 pp. ISBN: 978-3-642-81156-2Suche in Google Scholar
Tuf I.H., Dedek P. & Veselý M. 2012. Does the diunal activity pattern of carabid beetles depend on season, ground temperature and habitat? Arch. Biol. Sci. 64 (2): 721-732. 10.2298/ABS1202721TSuche in Google Scholar
Turin H., Penev L. & Casale A. (eds). 2003. The Genus Carabus L. in Europe. A Synthesis. Fauna Europaea Evertebrata No. 2, Pensoft Publisher, Sofia-Moscow-Leiden, 540 pp. ISBN: 954-642-120-0Suche in Google Scholar
Wallin H. & Ekbom B.S. 1988. Movements of carabid beetles (Coleoptera, Carabidae) inhabiting cereal fields – a field tracking study. Oecologia 77 (1): 39–43. 10.1007/BF00380922Suche in Google Scholar PubMed
Watts C. & Thornburrow D. 2011. Habitat use, behavior and movement patterns of a threatened New Zealand giant weta, Deinacrida heteracantha (Anostostomatidae: Orthoptera). J. Orthoptera Res. 20 (1): 127–135. DOI: doi:10.1665/034.020.0112Suche in Google Scholar
White G.C. & Garrott R.A. 1990. Analysis of Wildlife Radiotracking Data. Academic Press, San Diego, 383 pp. ISBN: 978-0-12-746725-2Suche in Google Scholar
Wikelski M., Moskowitz D., Adelman J.S., Cochran J., Wilcove D.S. & May M.L. 2006. Simple rules guide dragonfly migration. Biol. Lett. 2 (3): 325–329. 10.1098/rsbl.2006.0487Suche in Google Scholar PubMed PubMed Central
Zlatník A. 1976. Přehled skupin typů geobiocénů původně lesních a křovinných CSSR. Zprávy Geografického ústavu CSAV, Brno 13 (3/4): 55–64.Suche in Google Scholar
©2016 Institute of Zoology, Slovak Academy of Sciences
Artikel in diesem Heft
- Cellular and Molecular Biology
- Mitochondrial clock: moderating evolution of early eukaryotes in light of the Proterozoic oceans
- Cellular and Molecular Biology
- Induced sterility in fish and its potential and challenges for aquaculture and germ cell transplantation technology: a review
- Botany
- Human impact on sandy beach vegetation along the southeastern Adriatic coast
- Botany
- Temporal dynamics in the genetic structure of a natural population of Picea abies
- Botany
- Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance
- Botany
- Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea
- Zoology
- Climatic conditions driving a part of changes in the biochemical composition in land snails: Insights from the endangered Codringtonia(Gastropoda: Pulmonata)
- Zoology
- New and little known ptyctimous mites (Acari: Oribatida) with a key to known species of Oribotritia from the Australasian Region
- Zoology
- Using radio telemetry to track ground beetles: Movement of Carabus ullrichii
- Zoology
- Trophic relations between adult water beetles from the Dytiscidae family and non-biting midges (Diptera: Chironomidae)
- Zoology
- Role of the invasive Chinese sleeper Perccottus glenii (Actinopterygii: Odontobutidae) in the distribution of fish parasites in Europe: New data and a review
- Zoology
- Translocations of tropical and subtropical marine fish species into the Mediterranean. A case study based on Siganus virgatus (Teleostei: Siganidae)
- Zoology
- Distribution, habitats and abundance of the herb field mouse (Apodemus uralensis) in Lithuania
Artikel in diesem Heft
- Cellular and Molecular Biology
- Mitochondrial clock: moderating evolution of early eukaryotes in light of the Proterozoic oceans
- Cellular and Molecular Biology
- Induced sterility in fish and its potential and challenges for aquaculture and germ cell transplantation technology: a review
- Botany
- Human impact on sandy beach vegetation along the southeastern Adriatic coast
- Botany
- Temporal dynamics in the genetic structure of a natural population of Picea abies
- Botany
- Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance
- Botany
- Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea
- Zoology
- Climatic conditions driving a part of changes in the biochemical composition in land snails: Insights from the endangered Codringtonia(Gastropoda: Pulmonata)
- Zoology
- New and little known ptyctimous mites (Acari: Oribatida) with a key to known species of Oribotritia from the Australasian Region
- Zoology
- Using radio telemetry to track ground beetles: Movement of Carabus ullrichii
- Zoology
- Trophic relations between adult water beetles from the Dytiscidae family and non-biting midges (Diptera: Chironomidae)
- Zoology
- Role of the invasive Chinese sleeper Perccottus glenii (Actinopterygii: Odontobutidae) in the distribution of fish parasites in Europe: New data and a review
- Zoology
- Translocations of tropical and subtropical marine fish species into the Mediterranean. A case study based on Siganus virgatus (Teleostei: Siganidae)
- Zoology
- Distribution, habitats and abundance of the herb field mouse (Apodemus uralensis) in Lithuania