Startseite Lebenswissenschaften Trophic relations between adult water beetles from the Dytiscidae family and non-biting midges (Diptera: Chironomidae)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Trophic relations between adult water beetles from the Dytiscidae family and non-biting midges (Diptera: Chironomidae)

  • Anna Frelik EMAIL logo , Jacek Koszałka und Joanna Pakulnicka
Veröffentlicht/Copyright: 14. September 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 8

Abstract

Predation is an exceptionally important interaction observed in the natural environment. It regulates the population size of potential prey and at the same time decreases competitiveness between them. Among predators inhabiting water environments, especially notable predators are water beetles, particularly adults of Dytiscidae. The results presented herein are an attempt to learn the trophic relations between adult Dytiscidae and non-biting midges (Diptera: Chironomidae). The studies were conducted in one-month intervals from April to September 2012–2013. In the diet structure of adult Dytiscidae of two size categories, the genus Glyptotendipes was found to be prevalent. The largest beetles tended to choose Chironomidae larvae significantly larger than those selected by medium-sized beetles. The diet was mainly composed of Chironomidae larvae related to aquatic vegetation, while larvae inherently connected with detritus were fewer. Statistically significant correlations were confirmed between the population size of Chironomidae larvae and adult insects consumed by beetles of medium body size. No such correlation was found in case of the largest beetles. The study revealed that despite the unquestionable influence of body size and the predation environment on the dietary selectivity of predatory Dytiscidae, the structure of consumed food is subject to noticeable seasonal variations, occurring from spring to autumn.

References

Altwegg R. 2003. Hungry predators render predator – avoidance behavior in tadpoles ineffective. Oikos 100 (2): 311–316. 10.1034/j.1600-0706.2003.12206.xSuche in Google Scholar

Armitage P.D., Cranston P.S. & Pinder L.C.V. 1995. The Chironomidae. The Biology and Ecology of Non-biting Midges. Chapman & Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne Madras, 572 pp. ISBN: 0-412-45260X, 9780-412-45260-4Suche in Google Scholar

Bose K.C. & Sen N.S. 1985. Studies on the preferential feeding habits of the common water beetle, Cybister tripunctatus asiaticus (SHARP) (Dytiscidae: Coleoptera). Bangladesh J. Zool. 13 (1): 61–62.Suche in Google Scholar

Bosi G. 2001. Observations on Colymbetine predation based on crop content analysis in three species: Agabus bipustulatus, Ilybius subaeneus, Rhantus suturalis (Coleoptera: Dytiscidae). Boll. Soc. Entomol. Ital. 133 (1): 37–42.Suche in Google Scholar

Charnov E.L. 1976. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9 (2): 129–136. 10.1016/0040-5809(76)90040-XSuche in Google Scholar

Cobbaert D., Bayley S.E. & Greter J.L. 2010. Effects of a top invertebrate predator (Dytiscus alaskanus; Coleoptera: Dytiscidae) on fishless pond ecosystems. Hydrobiologia 644 (1): 103–114. 10.1007/s10750-010-0100-7Suche in Google Scholar

Da Silva J., Albertoni E.F. & Palma-Silva C. 2015. Temporal variation of phytophilous Chironomidae over a 11-year period in a shallow Neotropical lake in southern Brazil. Hydrobiologia 742 (1): 129–140. 10.1007/s10750-014-1972-8Suche in Google Scholar

Deding J. 1988. Gut content analysis of diving beetles (Coleoptera: Dytiscidae). Nat. Jutl. 22 (10): 177–184.Suche in Google Scholar

Dettner K., Hübner M. & Classen R. 1986. Age structure, phenology and prey of some rheophilic Dytiscidae (Coleoptera). Entomol. Basil. 11: 343–370.Suche in Google Scholar

Diehl S. & Kornijow R. 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates, pp. 24–46. 10.1007/978-1-4612-0695-8_2. In: Jeppesen E., Sondergaard M. & Christoffersen K. (eds), The Structuring Role of Submerged Macrophytes in Lakes, Vol. 131, Series Ecological Studies, New York, USA, 427 pp. ISBN: 978-1-4612-6871-0Suche in Google Scholar

Durnova N.A., Demin A.G., Polukonova N.V. & Mugue N.S. 2014. The time of origin of the capacity to accrete and mine submerged substrates in the midge subfamilies Chironominae Macquart, 1838 and Orthocladiinae Lenz, 1921 (Diptera: Chironomidae): analysis of mitochondrial genes COI and COII. Entomol. Rev. 94 (7): 949–958. 10.1134/S0013873814070045Suche in Google Scholar

Elliot J.M. 2004. Prey switching in four species of carnivorous stoneflies. Freshwater Biol. 49 (6): 709–720. 10.1111/j.1365-2427.2004.01222.xSuche in Google Scholar

Feminella J.W. & Stewart K.W. 1986. Diet and predation by threeleaf associated stoneflies (Plecoptera) in an Arkansas mountain stream. Freshwater Biol. 16 (4): 521–538. 10.1111/j.1365-2427.1986.tb00995.xSuche in Google Scholar

Formanowicz D.R. Jr. 1986. Anuran/tadpole aquatic insect predator-prey interactions: tadpole size and predator capture success. Herpetologica 42 (3): 367–373.Suche in Google Scholar

Frelik A. 2014a. Food of adult diving beetles Colymbetes fuscus (Linnaeus, 1758) and C. striatus (Linnaeus, 1758) (Coleoptera: Dytiscidae) in the Zehlau Peatbog and in oxbow lakes and fens (the Biebrza Marshes). Pol. J. Entomol. 83 (2): 171–180. 10.2478/pjen-2014-0012Suche in Google Scholar

Frelik A. 2014b. Predation of adult large diving beetles Dytiscus marginalis (Linnaeus, 1758), Dytiscus circumcinctus (Ahrens, 1811) and Cybister lateralimarginalis (De Geer, 1774) (Coleoptera: Dytiscidae) on fish fry. Oceanol. Hydrobiol. Stud. 43 (4): 360–365. 10.2478/s13545-014-0153-8Suche in Google Scholar

Frelik A. & Pakulnicka J. 2015. Relations between the structure of benthic macroinvertebrates and the composition of adult water beetle diets from the Dytiscidae family. Environ. Entomol. 44 (5): 1348–1357. 10.1093/ee/nvv113Suche in Google Scholar PubMed

Galewski K. & Tranda E. 1978. Fauna słodkowodna Polski. Zeszyt 10. Chrząszcze (Coleoptera). Polska Akademia Nauk, Institut Ekologii, Zaklad Biologii Rolnej PWN, Warsaw – Poznań, 396 ppSuche in Google Scholar

Gautam A. & Goutam K.S. 2006. Predation of the beetle Rhantus sikkimensis (Coleoptera: Dytiscidae) on the larvae of Chironomus Meigen (Diptera: Chironomidae) of the Darjeeling Himalayas of India. Limnologica 36 (4): 251–257. 10.1016/j.limno.2006.07.004Suche in Google Scholar

Hicks B.J. 1994. Foregut contents of adult Ilybius erichson (Coleoptera: Dytiscidae) from Newfoundland. Coleopt. Bull. 48 (2): 199–200.Suche in Google Scholar

Hodkinson L.D. & Williams K.A. 1980. Tube formation and distribution of Chironomus plumosus L. (Diptera: Chironomidae) in a eutrophic woodland pond, pp. 331–337. In: Murray D.A. (ed.), Chironomidae: Ecology, Systematics, Cytology and Physiology, Pergamon Press, Oxford, 376 pp. ISBN-10: 1483123073, ISBN-13: 978-148312307310.1016/B978-0-08-025889-8.50051-9Suche in Google Scholar

Holomuzki J.R. 1986. Predator avoidance and diel patterns of microhabitat use by larval tiger salamanders. Ecology 67 (3): 737–748. 10.2307/1937697Suche in Google Scholar

Huey R.B. & Pianka E.R. 1981. Ecological consequences of foraging mode. Ecology 62 (4): 991–999. 10.2307/1936998Suche in Google Scholar

Ideker J. 1979. Adult Cybister fimbriolatus are predaceous (Coleoptera: Dytiscidae). Coleopt. Bull. 33 (1): 41–44.Suche in Google Scholar

Izvekova E. & Lvova-Katchanova A.A. 1972. Sedimentation of suspended matter by Dreissena polymorpha Pallas and its subsequent utilization by Chironomidae larvae. Pol. Arch. Hydrobiol. 19: 203–210.Suche in Google Scholar

Johannsson O.E. & Beaver L. 1983. Role of algae in the diet of Chironomus plumosus f. semireductus from the Bay of Quinte, Lake Ontario. Hydrobiologia 107 (3): 237–247. 10.1007/BF00036693Suche in Google Scholar

Johnson G.H. & Jakinovich W. 1970. Feeding behavior of predaceous diving beetle, Cybister fimbriolatus fimbriolatus (Say) (Coleoptera: Dytiscidae). Coleopt. Bull. 26 (1): 23–24.Suche in Google Scholar

Johnson R.K. 1987. Seasonal variation in diet of Chironomus plumosus (L.) and C. anthracinus (Zett.) (Diptera: Chironomidae) in meso trophic Lake Erken. Freshwater. Biol. 17 (3): 525–532. 10.1111/j.1365-2427.1987.tb01073.xSuche in Google Scholar

Kangasniemi B.J. & Oliver D.R. 1983. Chironomidae (Diptera) associated with Myriophyllum spicatum in Okanagan Valley Lakes, British Columbia. Can. Entomol. 115 (11): 1545–1546. DOI: doi:10.4039/Ent1151545-11Suche in Google Scholar

Kawecka B. & Kownacki A. 1974. Food conditions of Chironomidae in the River Raba. Entomol. Tidskr. 95: 120–128.Suche in Google Scholar

Kehl S. & Dettner K. 2003. Predation by pioneer water beetles (Coleoptera, Dytiscidae) from sandpit ponds, based on crop-content analysis and laboratory experiments. Arch. Hydrobiol. 158 (1): 109–126. 10.1127/0003-9136/2003/0158-0109Suche in Google Scholar

Klecka J. & Boukal D.S. 2012. Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLoS One 7 (6): e37741. 10.1371/journal.pone.0037741Suche in Google Scholar PubMed PubMed Central

Kondo S., Hamashima S. & Hashimoto H. 1989. Life history and seasonal occurrence of Pentapedilum tigrinum Hashimoto associated with Nymphoides indica O. Kuntze in an irrigation reservoir. Acta Biol. Debrecina, Suppl. Oecol. Hung. 2: 237–245.Suche in Google Scholar

Krebs C.J. 1994/1993 Ecology: The Experimental Analysis of Distribution and Abundance. 4th Edn, Harper Collins, New York, 686 pp. ISBN-10: 0065004108, ISBN-13: 9780065004106Suche in Google Scholar

Kutschera U. 2003. The feeding strategies of the leech Erpobdella octoculata (L.): A laboratory study. Int. Rev. Hydrobiol. 88 (1): 94–101. 10.1002/iroh.200390008Suche in Google Scholar

Lindberg H. 1944. Ökologisch-geographische Untersuchungen zur Insektenfauna der Felsentümpel an den Küsten Finnlands. Acta. Zool. Fenn. 41: 1–178.Suche in Google Scholar

Lundkvist E., Landin J., Jackson M. & Svenson C. 2003. Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. Bull. Entomol. Res. 93 (3): 219–226. 10.1079/BER2003237Suche in Google Scholar PubMed

Mackey A.P. 1979. Trophic dependencies of some larval Chironomidae (Diptera) and fish species in the River Thames. Hydrobiologia 62 (3): 241–247. 10.1007/BF00043541Suche in Google Scholar

Martin D.C. & Neely R.K. 2001. Benthic macroinvertebrate response to sedimentation in a Typha angustifolia L. wetland. Wetl. Ecol. Manage. 9 (5): 441–454. 10.1023/A:10120 46624646Suche in Google Scholar

Moore J.W. 1979. Some factors influencing the distribution, seasonal abundance and feeding of subarctic Chironomidae (Diptera). Arch. Hydrobiol. 85: 302–325.Suche in Google Scholar

Moore J.W. 1980. Factors influencing the composition, structure and density of a population of benthic invertebrates. Arch. Hydrobiol. 88: 202–218.Suche in Google Scholar

Pakulnicka J. 2008. The formation of water beetle fauna in anthropogenic water bodies. Oceanol. Hydrobiol. Stud. 37 (1): 31–42. 10.2478/v10009-007-0037-ySuche in Google Scholar

Pakulnicka J., Górski A. & Bielecki A. 2015. Environmental factors associated with biodiversity and the occurrence of rare, threatened, thermophilous species of aquatic beetles in the anthropogenic ponds of the Masurian Lake District. Biodivers. Conserv. 24 (3): 429–445. 10.1007/s10531-014-0774-7Suche in Google Scholar

Pakulnicka J., Górski A., Bielecki A., Buczyński P., Tończyk G. & Cichocka J.M. 2013. Relationships within aquatic beetle (Coleoptera) communities in the light of ecological theories. Fundament. Appl. Limnol. 183 (3): 249-258. 10.1127/1863-9135/2013/0413Suche in Google Scholar

Pakulnicka J. & Nowakowski J.J. 2012. The effect of hydrological connectivity on water beetles fauna in water bodies within the floodplain of a lowland river (Neman river, Belarus). Oceanol. Hydrobiol. Stud. 41 (2): 7–17. 10.2478/s13545-012-0012-4Suche in Google Scholar

Rasmussen J.B. 1984. Comparison of gut contents and assimilation efficiency of fourth instar larvae of two coexisting chironomids, Chironomus riparius (Meigen) and Glyptotendipes paripes (Edwards). Can. J. Zool. 62 (6): 1022–1026. 10.1139/z84-145Suche in Google Scholar

Rasmussen J.B. 1985. Effects of density and microdetritus enrichment on the growth of chironomid larvae in a small pond. Can. J. Fish. Aquat. Sci. 42 (8): 1418–1422. 10.1139/f85-177Suche in Google Scholar

Rosa B.F.J.V., Dias-Silva M.V.D. & Alves R.G. 2013. Composition and structure of the Chironomidae (Insecta: Diptera) community associated with Bryophytes in a first-order stream in the Atlantic Forest, Brazil. Neotrop. Entomol. 42 (1): 15–21. 10.1007/s13744-012-0086-0Suche in Google Scholar PubMed

Sanseverino A.M. & Nessimian J.L. 2008. The food of larval Chironomidae (Insecta, Diptera) in submerged litter in a forest stream of the Atlantic Forest (Rio de Janeiro, Brazil). Acta. Limnol. Bras. 20 (1): 15–20.Suche in Google Scholar

Sephton T.W. 1987. Some observations on the food of larvae of Procladius bellus (Diptera: Chironomidae). Aquat. Insects 9 (4): 195–202. DOI: doi:10.1080/01650428709361296Suche in Google Scholar

Silva F.L., Ruiz S.S., Bochini G.L. & Moreira D.C. 2008. Functional feeding habits of Chironomidae larvae (Insecta, Dipotera) in a lotic system from Midwestern region of Sao Paulo State, Brazil. PANAMJAS 3 (2): 135–141.Suche in Google Scholar

Sokal R.R. & Rohlf F.J. 1995. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edn., WH Freeman, New York, 937 pp. ISBN-13: 978-0-7167-8604-4, ISBN-10: 0-7167-8604-4Suche in Google Scholar

Swamy C.G. & Rao K.H. 1974. Studies on the feeding habits of Eretes sticticus (L.) (Dytiscidae – Coleoptera). Curr. Sci. 43 (7): 220–222.Suche in Google Scholar

Szoszkiewicz K., Jusik S. & Zgoła T. 2010. Klucz do oznaczania makrofitów dla potrzeb oceny stanu ekologicznego wód powierzchniowych w Polsce [Identification key to macrophytes for the purposes of assessment of the ecological status of surface waters in Poland]. PIB, Warsaw, 308 pp. ISBN: 978-83-61227-32-8Suche in Google Scholar

Tarkowska-Kukuryk M. 2014. Spatial distribution of epiphytic chironomid larvae in a shallow macrophyte-dominated lake: effect of macrophyte species and food resources. Limnology 15 (2): 141–153. 10.1007/s10201-014-0425-4Suche in Google Scholar

Thienemann A. 1954, Chironomus. Leben, Verbreitung und wirtschaftliche Bedeutung der Chironomiden. Binnengewässer 20: 1–834.Suche in Google Scholar

Titmus G. & Badcock R.M. 1981. Distribution and feeding of larval Chironomidae in a gravelpit lake. Freshwater Biol. 11 (3): 263–271. 10.1111/j.1365-2427.1981.tb01259.xSuche in Google Scholar

Van Der Velde, G. & Hiddink R 1987. Chironomidae mining in Nuphar lutea (L.) Sm. (Nymphaeaceae). Entomol. Sci. 29: 255–264.Suche in Google Scholar

Volkova P., Dzhafarova A., Fedorova D., Gladchenko M., Karnayeva A., Pozdnyakov O., Slobodkina Y., Tilipman D. & Petrov P. 2013. Effect of two types and different quantities of bait on the efficiency of funnel traps for diving beetles (Coleoptera: Dytiscidae) with special emphasis on Graphoderus bilineatus DeGeer, 1774. Latvijas Entomologs 52: 119–129.Suche in Google Scholar

Ward A.F. & Williams D.D. 1986. Longitudinal zonation and food of larval chironomids (Insecta: Diptera) along the course of a river in temperate Canada. Holarctic Ecol. 9 (1): 48–57. 10.1111/j.1600-0587.1986.tb01190.xSuche in Google Scholar

Warren P.H. & Lawton J.H. 1987. Invertebrate predator – prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia 74 (2): 231–235. 10.1007/BF00379364Suche in Google Scholar PubMed

Way M.O. & Wallace R.G. 1989. First record of midge damage to rice in Texas. Southwestern Entomologist 14 (1): 27–33.Suche in Google Scholar

Wiederholm T. (ed.). 1983. Chironomidae of the Holarctic region. Keys and Diagnoses. Vol. 1. Larvae. Entomologica Scandinavica Supplement 19, 573 pp. ISBN-13: 9789163746680Suche in Google Scholar

Received: 2015-8-28
Accepted: 2016-7-25
Published Online: 2016-9-14
Published in Print: 2016-8-1

©2016 Institute of Zoology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. Mitochondrial clock: moderating evolution of early eukaryotes in light of the Proterozoic oceans
  3. Cellular and Molecular Biology
  4. Induced sterility in fish and its potential and challenges for aquaculture and germ cell transplantation technology: a review
  5. Botany
  6. Human impact on sandy beach vegetation along the southeastern Adriatic coast
  7. Botany
  8. Temporal dynamics in the genetic structure of a natural population of Picea abies
  9. Botany
  10. Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance
  11. Botany
  12. Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea
  13. Zoology
  14. Climatic conditions driving a part of changes in the biochemical composition in land snails: Insights from the endangered Codringtonia(Gastropoda: Pulmonata)
  15. Zoology
  16. New and little known ptyctimous mites (Acari: Oribatida) with a key to known species of Oribotritia from the Australasian Region
  17. Zoology
  18. Using radio telemetry to track ground beetles: Movement of Carabus ullrichii
  19. Zoology
  20. Trophic relations between adult water beetles from the Dytiscidae family and non-biting midges (Diptera: Chironomidae)
  21. Zoology
  22. Role of the invasive Chinese sleeper Perccottus glenii (Actinopterygii: Odontobutidae) in the distribution of fish parasites in Europe: New data and a review
  23. Zoology
  24. Translocations of tropical and subtropical marine fish species into the Mediterranean. A case study based on Siganus virgatus (Teleostei: Siganidae)
  25. Zoology
  26. Distribution, habitats and abundance of the herb field mouse (Apodemus uralensis) in Lithuania
Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0115/html
Button zum nach oben scrollen