Startseite Lebenswissenschaften Molecular detection of Mycobacterium tuberculosis complex in the 8th century skeletal remains from the territory of Slovakia
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Molecular detection of Mycobacterium tuberculosis complex in the 8th century skeletal remains from the territory of Slovakia

  • Klaudia Kyselicová EMAIL logo , Lukáš Šebest EMAIL logo , Csaba Bognár , Michal Šarkan , Marián Baldovič , Radoslav Beňuš und Ľudevít Kádaši
Veröffentlicht/Copyright: 14. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 6

Abstract

DNA was extracted using a Silica Bead Extraction kit from bone samples taken from a Slavonic-Avar individual found at the archaeological site of Cífer-Pác. The analysed skeletal remains from the grave number 62/79 belong to a young adult male (20–30 years at death) and are dated to the 8th–9th century anno Domini. The isolated ancient DNA (aDNA) was amplified by a targeted PCR with a primer pair designed to recognize the Mycobacterium tuberculosis complex insertion sequence IS6110. The aim of this molecular approach was to test and optimize a methodology for aDNA M. tuberculosis complex extraction from bone samples with osteological evidence of tuberculosis. Despite of the currently biased authenticity of the mentioned fragment, in this case study we prove that macroscopic evidence for tuberculosis additionally supported by a positive result of molecular testing can be considered authentic enough to be the proof of a tuberculosis infection caused by MTBC (Mycobacterium tuberculosis complex) bacteria when additional skeletal trauma and changes potentially caused by MOTT (mycobacteria other than tuberculosis) bacteria can be excluded. Positivity was confirmed in all of the three samples (thoracic vertebrae, lumbar vertebrae and right femur). Our results confirmed the diagnosis of tuberculosis of the spine and right hip joint. This is the first molecular evidence for the occurrence of tuberculosis on the territory of Slovakia. Through this bio-molecular approach we wish to provide a basis for aDNA examinations on other skeletal collections and provide epidemiological data concerning historical populations living on the territory of Slovakia.

References

Aranaz A., Cousins D., Mateos A. & Domínguez L. 2003. Elevation of Mycobacterium tuberculosis subsp. caprae to species rank as Mycobacterium caprae comb. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 53: 1785–1789.10.1099/ijs.0.02532-0Suche in Google Scholar

Aufderheide A.C. & Rodríguez-Martin C. 1998. The Cambridge Encyclopedia of Human Paleopathology. Cambridge University Press, Cambridge, 481 pp.Suche in Google Scholar

Baron H., Hummel S. & Herrmann B. 1996. Mycobacterium tuberculosis complex DNA in ancient human bones. J. Archaeol. Sci. 23: 667–671.10.1006/jasc.1996.0063Suche in Google Scholar

Beňuš R., Baldovic M. & Masnicová S. 2002. A probable case of tuberculosis in a Slavonic-Avar population from Cífer-Pác (West Slovakia). Bull. Slov. Antropol. Spol. SAV 5: 1–9 (In Slovak).Suche in Google Scholar

Bos K.I., Harkins K.M., Herbig A., Coscolla M., Weber N., Comas I., Forrest S.A., Bryant J.M., Harris S.R., Schuenemann V.J., Campbell T.J., Majander K., Wilbur A.K., Guichon R.A., Wolfe Steadman D.L., Cook D.C., Niemann S., Behr M.A., Zumarraga M., Bastida R., Huson D., Nieselt K., Young D., Parkhill J., Buikstra J.E., Gagneux S., Stone A.C. & Krause J. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514: 494–497.10.1038/nature13591Suche in Google Scholar

Burger J., Hummel S., Herrmann B. & Henke W. 1999. DNA preservation: a microsatellite-DNA study on ancient skeletal remains. Electrophoresis 20: 1722–1728.10.1002/(SICI)1522-2683(19990101)20:8<1722::AID-ELPS1722>3.0.CO;2-4Suche in Google Scholar

Canci A., Minozzi S. & Borgognini Tarli S.M. 1996. New evidence of tuberculous spondylitis from Neolithic Liguria (Italy). Int. J. Osteoarchaeol. 6: 497–501.10.1002/(SICI)1099-1212(199612)6:5<497::AID-OA291>3.0.CO;2-OSuche in Google Scholar

Comas I., Coscolla M., Luo T., Borrell S., Holt K.E., Kato-Maeda M., Parkhill J., Malla B., Berg S., Thwaites G., Yeboah-Manu D., Bothamley G., Mei J., Wei L., Bentley S., Harris S.R., Niemann S., Diel R., Aseffa A., Gao Q., Young D. & Gagneux S. 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45: 1176–1182.10.1038/ng.2744Suche in Google Scholar

Coros A., DeConno E. & Derbyshire K.M. 2008. IS6110, a Mycobacterium tuberculosis complex-specific insertion sequence, is also present in the genome of Mycobacterium smegmatis, suggestive of lateral gene transfer among mycobacterial species. J. Clin. Microbiol. 190: 3408–3410.Suche in Google Scholar

Eisenach K.D., Cave M.D., Bates J.H. & Crawford J.T. 1990. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J. Infect. Dis. 161: 977–981.10.1093/infdis/161.5.977Suche in Google Scholar

Elsayed S. & Read R. 2006. Mycobacterium haemophylum osteomyelitis: case report and review of the literature. BMC Infect. Dis. 6: 70.10.1186/1471-2334-6-70Suche in Google Scholar

Fairhurst R.M., Kubak B.M., Pegues D.A., Moriguchi J.D., Han K. F., Haley J.C. & Kobashigawa J.A. 2002. Mycobacterium haemophilum infections in heart transplant recipients: case report and review of the literature. Am. J. Transplant. 5: 476–479.10.1034/j.1600-6143.2002.20514.xSuche in Google Scholar

Gutiérrez M., Samper S., Jiménez M. S., van Embden J.D.A., Marin J.F. & Martín C. 1997. Identification by spoligotyping of a caprine genotype in Mycobacterium bovis strains causing human tuberculosis. J. Clin. Microbiol. 35: 3328–3330.10.1128/jcm.35.12.3328-3330.1997Suche in Google Scholar

Haynes S., Searle J.B., Bretman A. & Dobney K.M. 2002. Bone preservation and ancient DNA: the application of screening methods for predicting DNA survival. J. Archaeol. Sci. 29: 585–592.10.1006/jasc.2001.0731Suche in Google Scholar

Hirsch R., Miller S.M., Kazi S., Cate T.R. & Reveille J.D. 1996. Human immunodeficiency virus-associated atypical mycobacterial skeletal infections. Semin. Arthritis Reum. 25: 347–356.10.1016/S0049-0172(96)80020-5Suche in Google Scholar

Hofreiter M., Serre D., Poinar H.N., Kuch M. & Pääbo S. 2001. Ancient DNA. Nat. Rev. Genet. 2: 353–359.10.1093/obo/9780199941728-0036Suche in Google Scholar

Kemp B.M., Malhi R.S., McDonough J., Bolnick D.A., Eshleman J.A., Rickards O., Martinez-Labarga C., Johnson J.R., Lorenz J.G., Dixon E.J., Fifield T.E., Heaton T.H., Worl R. & Smith D.G. 2007. Genetic analysis of early holocene skeletal remains from Alaska and its implications for the settlement of the Americas. Am. J. Phys. Anthropol. 132: 605–621.10.1002/ajpa.20543Suche in Google Scholar PubMed

Kiehn T.E. & White M. 1994. Mycobacterium haemophylum: an emerging pathogen. Eur. J. Clin. Microbiol. 11: 925–931.10.1007/BF02111493Suche in Google Scholar PubMed

Kiers A., Klarenbeek A., Mendelts B., Van Soolingen D. & Koëter G. 2008. Transmission of Mycobacterium pinnipedii to humans in a zoo with marine mammals. Int. J. Tuberc. Lung Dis. 12: 1469–1473.Suche in Google Scholar

Masson M., Bereczki Z., Molnár E., Donoghue H.E., Minnikin D.E., Lee O.Y., Wu H.H., Besra G.S., Bull I.D. & Pálfi G. 2015. 7000 year-old tuberculosis cases from Hungary – Osteological and biomolecular evidence. Tuberculosis (Edinb) 95 (Suppl. 1): S13-S17.10.1016/j.tube.2015.02.007Suche in Google Scholar PubMed

Müller R., Roberts C.A. & Brown T.A. 2014. Biomolecular identification of ancient Mycobacterium tuberculosis complex DNA in human remains from Britain and continental Europe. Am. J. Phys. Anthropol. 153: 178–189.10.1002/ajpa.22417Suche in Google Scholar PubMed

Müller R., Roberts C.A. & Brown T. 2014. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity. Proc. Biol. Sci. 281: 20133236.10.1098/rspb.2013.3236Suche in Google Scholar PubMed PubMed Central

Müller R., Roberts C.A. & Brown T.A. 2015. Complications in the study of ancient tuberculosis: non-specificity of IS6110 PCRs. Sci. Technol. Archaeol. Res. 1: 1–8.10.1179/2054892314Y.0000000002Suche in Google Scholar

Nicklisch N., Maixner F., Ganslmeier R., Friederich S., Dresely V., Meller H., Zink A. & Alt K. 2012. Rib lesions in skeletons from early Neolithic sites in central Germany: on the trail of tuberculosis at the onset of agriculture. Am. J. Phys. Anthropol. 149: 391–404.10.1002/ajpa.22137Suche in Google Scholar PubMed

Ortner D.J. 2003. Methods used in the analysis of skeletal lesions, pp. 45–55. In: Identification of Pathological Conditions in Human Skeletal Remains. Academic Press, San Diego.10.1016/B978-012528628-2/50041-7Suche in Google Scholar

Pálfi G., Maixner F., Maczel M., Molnár E., Pòsa A., Kristóf L. A., Marcsik A., Balázs J., Masson M., Paja L., Palkó A., Szentgyörgyi R., Nerlich A., Zink A. & Dutour O. 2015. Unusual spinal tuberculosis in an Avar Age skeleton (Csongrád-Felgyő, Ürmös-tanya, Hungary): a morphological and biomolecular study. Tuberculosis (Edinb) 95 (Suppl. 1): S29–S34.10.1016/j.tube.2015.02.033Suche in Google Scholar PubMed

Pruvost M., Schwarz R., Bessa Correia V., Champlot S., Braguier S., Morel N., Fernanez-Jalvo Y., Grange T. & Geigl E.M. 2007. Freshly excavated fossil bones are best for amplification of ancient DNA. Proc. Natl. Acad. Sci. USA 104: 739–744.10.1073/pnas.0610257104Suche in Google Scholar PubMed PubMed Central

Resnick D. & Niwayama G. 1988. Diagnosis of Bone and Joint Disorders. Saunders, Philadelphia, 4944 pp.Suche in Google Scholar

Resnick D. & Niwayama G. 1995. Osteomyelitis, septic arthritis, and soft tissue infection: organisms, pp. 2419–2447. In: Resnick D. (ed.), Diagnosis of Bone and Joint Disorders, Saunders, Edinburgh.Suche in Google Scholar

Ritis K., Tzoanopoulos D., Speletas M., Papadopoulos E., Arvanitidis K., Kartali S. & Sideras P. 2000. Amplification of IS6110 sequence for detection of Mycobacterium tuberculosis complex in HIV-negative patients with fever of unknown origin (FUO) and evidence of extrapulmonary disease. J. Intern. Med. 248: 415–424.10.1046/j.1365-2796.2000.00750.xSuche in Google Scholar PubMed

Rohland N. & Hofreiter M. 2007. Ancient DNA extraction from bones and teeth. Nature Protoc. 2: 1756–1762.10.1038/nprot.2007.247Suche in Google Scholar PubMed

Sankar S., Kuppanan S., Balakrishnan B. & Nandagopal B. 2011. Analysis of sequence diversity among IS6110 sequence of Mycobacterium tuberculosis: possible implications for PCR based detection. Bioinformation 6: 283–285.10.6026/97320630006283Suche in Google Scholar PubMed PubMed Central

Saubolle M.A., Kiehn T.E., White M.H., Rudinsky M.F. & Armstrong D. 1996. Mycobacterium haemophylum: microbiology and expanding clinical and geographic spectra of disease in humans. Clin. Microbiol. Rev. 9: 435–447.10.1128/CMR.9.4.435Suche in Google Scholar PubMed PubMed Central

Shimizu H., Mizuno Y., Nakamura I., Fukushima S., Endo K. & Matsumoto T. 2013. Vertebral osteomyelitis caused by nontuberculous mycobacteria: case reports and review. J. Infect. Chemother. 19: 972–977.10.1007/s10156-013-0550-8Suche in Google Scholar PubMed

Staššíková-Štukovská D., Thurzo M., Šefcáková A. & Lietava J. 2006. Archaeological and paleopathological interpretations of an atypical grave No. 22/86 excavated at the early medieval cemetery of Borovce (district Piešany, Slovakia), pp. 208–221. In: In Service to Archaeology. Proceedings dedicated to Doc. PhDr. Karel Valoch, DrSc. Muzejní a vlastivědná spolecnost v Brně, Brno (In Slovak).Suche in Google Scholar

Straus W.L., Ostroff S.M., Jernigan D.B., Kiehn T.E., Sordillo E.M., Armstrong D., Boone N., Schneider N., Kilburn J.O., Silcox V.A., LaBombardi V., Good R.C. 1994. Cinical and epidemiologic characteristics of Mycobacterium haemophilum, an emerging pathogen in immunocompromised patients. Ann. Intern. Med. 120: 118–125.10.7326/0003-4819-120-2-199401150-00004Suche in Google Scholar PubMed

Thacker T.C., Harris B., Palmer M.V. & Waters W.R. 2011. Improved specificity for detection of Mycobacterium bovis in fresh tissue using IS6110 real-time PCR. BMC Vet. Res. 7: 50.10.1186/1746-6148-7-50Suche in Google Scholar PubMed PubMed Central

Theodorou D.J., Theodorou S.J., Kikatsubata Y., Sartoris D.J. & Resnick D. 2001. Imaging characteristics and epidemiologic features of atypical mycobacterial infections involving the musculoskeletal system. AMR Am. J. Roentgenol. 176: 341–349.10.2214/ajr.176.2.1760341Suche in Google Scholar PubMed

Thierry D., Cave M.D., Eisenach K.D., Crawford J.T., Bates J.H., Gicquel B. & Guesdon J.L. 1990. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res. 18: 188.10.1093/nar/18.1.188Suche in Google Scholar PubMed PubMed Central

Van Soolingen D., Hoogenboezem T., de Haas P.E.W., Hermans P.W.M., Koedam M.A., Teppema K.S., Brennan P.J., Besra G.S., Portaels F., Top J., Schouls L.M. & van Embden J.D.A. 1997. A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: characterization of an exceptional isolate from Africa. Int. J. Syst. Bacteriol. 47: 1236–1245.10.1099/00207713-47-4-1236Suche in Google Scholar PubMed

Van Soolingen D., van der Zanden A.G.M., de Haas P.E.W., Noordhoek G.T., Kiers A., Foudraine N.A., Portaels F., Kolk A.H.J., Kremer K. & van Embden J.D.A. 1998. Diagnosis of Mycobacterium microti infections among humans by using novel genetic markers. J. Clin. Microbil. 36: 1840–1845.10.1128/JCM.36.7.1840-1845.1998Suche in Google Scholar PubMed PubMed Central

White M.H., Papadopoulos E.B., Small T.N., Kiehn T.E. & Armstrong D. 1995. Mycobacterium haemophilum infections in bone marrow transplant recipients. Transplantation 60: 957–960.10.1097/00007890-199511150-00013Suche in Google Scholar

Wirth T., Hildebrand F., Allix-Béguec C., Wöolbeling F., Kubica T., Kremer K., van Soolingen D., Rüusch-Gerdes S., Locht C., Brisse S., Meyer A., Supply P. & Niemann S. 2008. Origin, spread and demography of the Mycobacterium tuberculosis complex. PloS Pathog. 4: e1000160.10.1371/journal.ppat.1000160Suche in Google Scholar PubMed PubMed Central

Wolinsky E. 1992. Mycobacterial diseases other than tuberculosis. Clin. Infect. Dis. 15: 1–12.10.1093/clinids/15.1.1Suche in Google Scholar PubMed

Woods G. 1987. Mycobacteria other than Mycobacterium tuberculosis: review of microbiologic and clinical aspects. Rev. Infect. Dis. 9: 275–294.10.1093/clinids/9.2.275Suche in Google Scholar PubMed

Zink A.R., Molnár E., Motamedi N., Pálfi G., Marcsik A. & Nerlich A.G. 2007. Molecular history of tuberculosis from ancient mummies and skeletons. Int. J. Osteoarchaeol. 17: 380–391.10.1002/oa.909Suche in Google Scholar

Abbreviations
AD

anno Domini

aDNA

ancient DNA

BC

before Christ

MOTT

mycobacteria other than tuberculosis

MTBC

Mycobacterium tuberculosis complex

NTM

non-tuberculous mycobacteria

TBC

tuberculosis.

Received: 2016-1-14
Accepted: 2016-6-3
Published Online: 2016-7-14
Published in Print: 2016-6-1

©2016 Institute of Molecular Biology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. Molecular detection of Mycobacterium tuberculosis complex in the 8th century skeletal remains from the territory of Slovakia
  3. Cellular and Molecular Biology
  4. First report of microorganisms of Caucasus glaciers (Georgia)
  5. Cellular and Molecular Biology
  6. Codon optimization of Aspergillus niger feruloyl esterase and its expression in Pichia pastoris
  7. Botany
  8. Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess
  9. Botany
  10. No confirmation for previously suggested presence of diploid cytotypes of Sesleria (Poaceae) on the Balkan Peninsula
  11. Botany
  12. RCD1 homologues and their constituent WWE domain in plants: analysis of conservation through phylogeny methods
  13. Botany
  14. Nucleoli migration coupled with cytomixis
  15. Cellular and Molecular Biology
  16. Evaluation of appropriate reference gene for normalization of microRNA expression by real-time PCR in Lablab purpureus under abiotic stress conditions
  17. Zoology
  18. The fractal nature of the latitudinal biodiversity gradient
  19. Zoology
  20. A new species of Neoribates (Neoribates) (Acari: Oribatida: Parakalummidae) with key to the Neotropical species of the subgenus
  21. Zoology
  22. Diversity patterns of aquatic specialists and generalists: contrasts among two spring-fen mesohabitats and nearby streams
  23. Zoology
  24. Heteroptera (Insecta: Hemiptera) of the peat bogs of Belarusian Lakeland
  25. Cellular and Molecular Biology
  26. Cloning of monoacylglycerol o-acyltransferase 2 cDNA from a silkworm, Bombyx mori
  27. Zoology
  28. Biological aspect of the surface structure of the tongue in the adult red kangaroo (Macropus rufus) — light and scanning electron microscopy
  29. Zoology
  30. Status of the rose-ringed parakeet Psittacula krameri in Lisbon, Portugal
  31. Zoology
  32. Considerations on the vulnerability of the Eurasian water shrew Neomys fodiens to the presence of introduced brown trout Salmo trutta
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0088/pdf
Button zum nach oben scrollen