Home Life Sciences Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess
Article
Licensed
Unlicensed Requires Authentication

Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess

  • Ivana Králiková EMAIL logo , Michal Goga , Ivana Biľová , Miriam Bačkorová and Martin Bačkor
Published/Copyright: July 14, 2016
Become an author with De Gruyter Brill

Abstract

In this study we focused on the comparison of the physiological responses to excess nitrogen (N) comparing Cladonia arbuscula subsp. mitis and Cladonia furcata. Both lichens were exposed to increased amounts of nitrogen (NH4NO3) for five weeks. Different concentrations of nitrogen were applied by spraying the lichen thalli during this period. After the treatment, the physiological parameters of the lichen, like chlorophyll a fluorescence, chlorophyll b integrity, content of soluble proteins, ergosterol, thiobarbituric acid reactive substances (TBARS) and content of secondary metabolites were measured. We found out that lichens responded differently to nitrogen excess concerning photobiont and mycobiont. The mycobiont of C. arbuscula subsp. mitis seems to be more sensitive to the nitrogen excess than C. furcata based on decreased ergosterol content. We concluded that the mycobiont is more sensitive to nitrogen excess than the photobiont in case of the tested lichen species in a middle term experiment.

Acknowledgements

This work was, in part, financially supported by Slovak Grant Agency (VEGA 1/0792/16). We thank Stephan Manhalter for critical reading and reviewing this manuscript.

References

Bačkor M., Kovácik J., Dzubaj A. & Bačkorová M. 2009. Physiological comparison of copper toxicity in the lichens Peltigera rufescens (Weis) Humb. and Cladina arbuscula subsp. mitis (Sandst.) Ruoss. Plant Growth Regul. 58:279–286.10.1007/s10725-009-9376-xSearch in Google Scholar

Bradford M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing of protein utilizing the principle of protein–dye binding. Analyt. Bioch. 72:248–254.10.1016/0003-2697(76)90527-3Search in Google Scholar

Dahlman L., Näsholm T. & Palmqwist K. 2001. Growth, nitrogen uptake, and resource allocation in the two tripartire lichens Nephroma arcticum and Peltigera aphthosa during nitrogen stress. New Phytol. 153:307–315.10.1046/j.0028-646X.2001.00321.xSearch in Google Scholar

Dahlman L., Zetherström M., Sundberg B., Näsholm T. & Palmqvist K. 2002. Measuring ergosterol and chitin in lichens, pp. 348-362. In: Kranner I., Beckett R. & Varma A. (eds), Protocols in Lichenology: Culturing. Biochemistry. Ecophysiology and Use in Biomonitoring. Springer Verlag. ISBN: 3540-41139-9.10.1007/978-3-642-56359-1_21Search in Google Scholar

Hauck M. 2010. Ammonium and nitrate tolerance in lichens. Environ. Poll. 158:1127–1133.10.1016/j.envpol.2009.12.036Search in Google Scholar PubMed

Hauck M., Helms G. & Friedl T. 2007. Photobiont selectivity in the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides. Lichenologist 39:195–204.10.1017/S0024282907006639Search in Google Scholar

Johansson O., Nordin A., Olofsson J. & Palmqwist K. 2010. Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient. New Phytol. 188:1075–1084.10.1111/j.1469-8137.2010.03426.xSearch in Google Scholar PubMed

Loppi S. & Nascimbene J. 2010. Monitoring H2S air pollution caused by the industrial exploitation of geothermal energy: The pitfall of using lichens as bioindicators. Environ. Poll. 158:2635–2639.10.1016/j.envpol.2010.05.002Search in Google Scholar PubMed

Makkonen S., Hurri R.S.K. & Hyvärinen M. 2007. Differential responses of Lichen symbionts to enhanced nitrogen and phosphorus availability: An experiment with Cladina stellaris. Ann. Bot. 99:877–884.10.1093/aob/mcm042Search in Google Scholar PubMed PubMed Central

Maslaňáková I., Bil’ová I., Goga M., Kuchár M. & Bačkor M. 2015. Differences between sensitivity of mycobiont and photobiont of Cladonia sp. lichens to different types of nitrogen exposure. Water Air Soil Poll. 226:243.10.1007/s11270-015-2512-5Search in Google Scholar

Munzi S., Pirintsos S. A. & Loppi S. 2009a. Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen Xanthoria parietina under nitrogen stress. Ecotoxicol. Environ. Safety 72:281–285.10.1016/j.ecoenv.2008.04.013Search in Google Scholar PubMed

Munzi S., Pisani T. & Loppi S. 2009b. The integrity of lichen cell membrane as a suitable parameter for monitoring biological effects of acute nitrogen pollution. Ecotoxicol. Environ. Safety 72:2009–2012.10.1016/j.ecoenv.2009.05.005Search in Google Scholar PubMed

Munzi S., Pisani T., Paoli L. & Loppi S. 2010. Time- and dose-dependency of the effects of nitrogen pollution on lichens. Ecotoxicol. Environ. Safety 73:1785–1788.10.1016/j.ecoenv.2010.07.042Search in Google Scholar PubMed

Nash III T.H. 2008. Lichen Biology. Second Edition. USA, NY: Cambridge University Press, ISBN 978-0-521-69216-8.10.1017/CBO9780511790478Search in Google Scholar

Nimis P.L. & Martellos S. 2008. ITALIC- The information System on Italian Lichens. Version 4.0. University of Trieste, Dept. of Biology, IN4.0/1 http://dbiodbs.univ.trieste.it/Search in Google Scholar

Nybakken L., Johansson O. & Palmqwist K. 2009. Defensive compound concentration in boreal lichens in response to simulated nitrogen deposition. Global Change Biol. 15:2247–2260.10.1111/j.1365-2486.2009.01853.xSearch in Google Scholar

Ochoa-Hueso R. & Manrique E. 2011. Effects of nitrogen deposition and soil fertility on cover and physiology of Cladonia foliacea (Huds.) Willd., a lichen of biological soil crusts from Mediterranean Spain. Environ. Poll. 159:449–457.10.1016/j.envpol.2010.10.021Search in Google Scholar PubMed

Paoli L., Pirintsos S.A., Kotzabasis K., Pisani T., Navakoudis E. & Loppi S. 2010. Effects of ammonia from livestock farming on lichen photosynthesis. Environ. Poll. 158:2258–2265.10.1016/j.envpol.2010.02.008Search in Google Scholar PubMed

Paoli L., Corsini A., Bigagli V., Vannini J., Bruscoli C. & Loppi S. 2012. Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environ. Poll. 161:70–75.10.1016/j.envpol.2011.09.028Search in Google Scholar PubMed

Pawlik-Skowrońska B. & Bačkor M. 2011. Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats. Environ. Exp. Bot. 72:64–70.10.1016/j.envexpbot.2010.07.002Search in Google Scholar

Pirintsos S.A., Munzi S., Loppi S. & Kotzabasis K. 2009. Do polyamines alter the sensitivity of lichens to nitrogen stress? Ecotoxicol. Environ. Safety 72:1331–1336.10.1016/j.ecoenv.2009.03.001Search in Google Scholar PubMed

Pisani T., Munzi S., Paoli L., Bačkor M., Kovácik J., Piovár J. & Loppi S. 2010. Physiological effects of mercury in the lichens Cladonia arbuscula subsp. mitis (Sandst.) Ruoss and Peltigera rufescens (Weiss) Humb. Chemosphere 82:1030–1037.10.1016/j.chemosphere.2010.10.062Search in Google Scholar

Ronen R. & Galun M. 1984. Pigment extraction from lichens with dimethylsuloxide (DMSO) and estimation of chlorophyll degradation. Environ. Exp. Bot. 24:239–245.10.1016/0098-8472(84)90004-2Search in Google Scholar

Skaloud P. & Peksa O. 2010. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol. Phylog. Evol. 54:36–46.10.1016/j.ympev.2009.09.035Search in Google Scholar

Thormann M.N. 2006. Lichens as indicators of forest health in Canada. Forestry Chronicle 82:335–343.10.5558/tfc82335-3Search in Google Scholar

Wellburn A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144:307–313.10.1016/S0176-1617(11)81192-2Search in Google Scholar

Abbreviations
HPLC

high performance liquid chromatography

TBARS

thiobarbituric acid reactive species

TCA

trichloracetic acid

PhQ

phaeophytinization coefficient.

Received: 2016-3-14
Accepted: 2016-6-6
Published Online: 2016-7-14
Published in Print: 2016-6-1

©2016 Institute of Botany, Slovak Academy of Sciences

Articles in the same Issue

  1. Cellular and Molecular Biology
  2. Molecular detection of Mycobacterium tuberculosis complex in the 8th century skeletal remains from the territory of Slovakia
  3. Cellular and Molecular Biology
  4. First report of microorganisms of Caucasus glaciers (Georgia)
  5. Cellular and Molecular Biology
  6. Codon optimization of Aspergillus niger feruloyl esterase and its expression in Pichia pastoris
  7. Botany
  8. Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess
  9. Botany
  10. No confirmation for previously suggested presence of diploid cytotypes of Sesleria (Poaceae) on the Balkan Peninsula
  11. Botany
  12. RCD1 homologues and their constituent WWE domain in plants: analysis of conservation through phylogeny methods
  13. Botany
  14. Nucleoli migration coupled with cytomixis
  15. Cellular and Molecular Biology
  16. Evaluation of appropriate reference gene for normalization of microRNA expression by real-time PCR in Lablab purpureus under abiotic stress conditions
  17. Zoology
  18. The fractal nature of the latitudinal biodiversity gradient
  19. Zoology
  20. A new species of Neoribates (Neoribates) (Acari: Oribatida: Parakalummidae) with key to the Neotropical species of the subgenus
  21. Zoology
  22. Diversity patterns of aquatic specialists and generalists: contrasts among two spring-fen mesohabitats and nearby streams
  23. Zoology
  24. Heteroptera (Insecta: Hemiptera) of the peat bogs of Belarusian Lakeland
  25. Cellular and Molecular Biology
  26. Cloning of monoacylglycerol o-acyltransferase 2 cDNA from a silkworm, Bombyx mori
  27. Zoology
  28. Biological aspect of the surface structure of the tongue in the adult red kangaroo (Macropus rufus) — light and scanning electron microscopy
  29. Zoology
  30. Status of the rose-ringed parakeet Psittacula krameri in Lisbon, Portugal
  31. Zoology
  32. Considerations on the vulnerability of the Eurasian water shrew Neomys fodiens to the presence of introduced brown trout Salmo trutta
Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0078/html
Scroll to top button