Startseite Lebenswissenschaften Biological aspect of the surface structure of the tongue in the adult red kangaroo (Macropus rufus) — light and scanning electron microscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Biological aspect of the surface structure of the tongue in the adult red kangaroo (Macropus rufus) — light and scanning electron microscopy

  • Karolina Goździewska-Harłajczuk EMAIL logo , Joanna Klećkowska-Nawrot , Renata Nowaczyk , Karolina Barszcz , Helena Przespolewska und Marta Kupczyńska
Veröffentlicht/Copyright: 14. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 6

Abstract

The aim of this study was to identify the lingual surface and posterior lingual glands in the red kangaroo (Macropus rufus) using light and scanning electron microscopy (SEM). Haematoxylin and eosin (H&E), Masson-Goldner trichrome and Azan trichrome stainings were used for the histological examinations of both the papillae and concomitant glands, located beneath the body of the papillae. The samples were stained also with Alcian blue pH 2.5 and periodic acid-Schiff for histochemical observations. A scanning electron microscope (Tesla BS - 300) was used to examine the lingual surface. Small, giant and elongated filiform mechanical papillae and fungiform, vallate and foliate gustatory papillae were recognized. No typical conical or lenticular papillae were found on the lingual surface. The distribution of each group of papillae varied on the whole surface of the tongue. The majority of the fungiform papillae resembled “bud-like” shapes, and rotund taste buds were present within the fungiform papillae epithelium. The SEM study showed that the apical part of the vallate papilla was oval with an irregular surface. Additionally, the internal wall of this papilla had many intraepithelial cylindrical or rod-shaped taste buds. The papillary leaves did not have any typical appearance, however, the histological study showed the presence of intra-epithelial taste buds in the wall of the foliate papillae area. Furthermore, two types of posterior mixed mucoserous and serous lingual glands were observed. In conclusion, the morphology of the lingual surface as well as the structure of the lingual glands facilitates the consumption of particular foods in the red kangaroo. Additionally, there are typical microstructural features of the red kangaroo tongue, which are different than in other marsupials.

Acknowledgements

This research was supported by statutory research and development activity funds assigned to the Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences and to the Faculty of Veterinary Medicine, Warsaw University of Life Sciences. Publication supported by Wroclaw Center of Biotechnology, program Leading National Research Center (KNOW) for the years 2014-2018.

Conflict of interest

The authors declare that they have no conflict of interest.

Authors contributions

KGH, JKN, RN conceived the study, analyzed the results and wrote the manuscript; KB, HP, MK collected the research material and analyzed the results; all authors critically revised the manuscript.

References

Abd-Elnaeim M.M.M., Zayed A.E. & Leiser R. 2002. Morphological characteristics of the tongue and its papillae in the donkey (Equus asinus): a light and scanning electron microscopy study. Ann. Anat. 184 (5): 473–480. DOI: 10.1016/S0940-9602(02)80081-410.1016/S0940-9602(02)80081-4Suche in Google Scholar

Abd Murad N. & Hassan N.H. 2010. Anatomical study of the tongue in adult rams. Kufa J. Vet. Med. Sci. 1 (2): 48–57.Suche in Google Scholar

Abe T., Koizumi K. & Kobayashi K. 2001. Comparative morphological studies on the lingual papillae and their connective tissue cores in the Swamp wallaby Wallabia bicolor. Jpn. J. Oral Biol. 43 (3): 292–309.10.2330/joralbiosci1965.43.292Suche in Google Scholar

Abumandour M.M.A. & El-Bakary R.M.A. 2013a. Morphological and scanning microscopic studies of the tongue of the Egyptian fruit bat (Rousettus aegyptiacus) and their lingual adaptation for its feeding habits. Vet. Res. Commun. 37 (3): 229–238. DOI: 10.1007/s11259-013-9567-910.1007/s11259-013-9567-9Suche in Google Scholar PubMed

Abumandour M.M.A. & El-Bakary R.M.A. 2013b. Anatomic reference for morphological and scanning electron microscopic studies of the New Zealand white rabbits tongue (Orycotolagus cuniculus) and their lingual adaptation for its feeding habits. J. Morphol. Sci. 30 (4): 254–265.Suche in Google Scholar

Agungpriyono S., Yamada J., Kitamura N., Nisa C., Sigit K. & Yamamoto Y. 1995. Morphology of the dorsal lingua papillae in the lesser mouse deer, Tragulus javanicus. J. Anat. 187 (Pt 3): 635–640. PMID: 8586562Suche in Google Scholar PubMed

Chamorro C.A., Fernandez J.G., de Paz P., Pelaez B. & Anel L. 1994. Scanning electron microscopy of the wild boar and pig lingual papillae. Histol. Histopathol. 9 (4): 657–667. PMID: 7894137Suche in Google Scholar PubMed

Cheng S.J., Huang C.F., Chen Y.C., Lee J.J., Chang H.H., Chen H.M., Chiang M.L., Kuo M.Y., Kok S.H. & Tseng C.Y. 2009. Ultrastructural changes of posterior lingual glands after hypoglossal denervation in hamsters. J. Anat. 214 (1): 163–170. DOI: 10.1111/j.1469-7580.2008.01019.x.10.1111/j.1469-7580.2008.01019.xSuche in Google Scholar PubMed PubMed Central

Dawson T.J, Blaney C.E., Munn A.J., Krockenberger A. & Maloney S.K. 2000. Thermoregulation by kangaroos from mesic and arid habitats: influence of temperature on routes of heat loss in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus). Physiol. Biochem. Zool. 73 (3): 374–381. PMID: 1089317710.1086/316751Suche in Google Scholar PubMed

Docherty B.A., Alpart L.J., Bhatnagar K.P., Burrows A.M. & Smith T.D. 2010. Tongue morphology in infant and adult bushbabies (Otolemur spp.), pp. 257–260. DOI: 10.1007/978-1-4419-6661-2_13. In: Burrows A.M. & Nash L.T. (eds), The Evolution of Exudativory in Primates, Springer, 306 pp. ISBN: 978-1-4419-6660-5. DOI: 10.1007/978-1-4419-6661-210.1007/978-1-4419-6661-2Suche in Google Scholar

Eerdunchaolu Takehana K., Yamamoto E., Kobayashi A., Cao G., Baiyin Ueda H. & Tangkawattana P. 2001. Characteristics of dorsal lingual papillae of the Bactrian camel (Camelus bactrianus). Anat. Histol. Embryol. 30 (3): 147–151. DOI: 10.1111/j.1439-0264.2001.t01-1-0317.x10.1111/j.1439-0264.2001.t01-1-0317.xSuche in Google Scholar

El Sharaby A.A., El-Gendy S.A., Alsafy M.A., Nomir A.G. & Wakisaka S. 2014. Morphological variations of the vallate papillae in some mammalian species. Anat. Sci. Int. 89 (3): 161–170. DOI: 10.1007/s12565-013-0215-910.1007/s12565-013-0215-9Suche in Google Scholar PubMed

Emura S., Hayakawa D., Chen H. & Shoumura S. 2004. SEM and gross study on the lingual surface of the red kangaroo, Macropus rufus. Acta Scholae Medicinalis Universitatis in Gifu 52 (2): 30–35.Suche in Google Scholar

Emura S., Hayakawa A., Chen H., Shoumura S., Atoji Y. & Agungpriyono S. 2001. SEM study on the dorsal lingual surface of the lesser dog-faced fruit bat (Cynopterus brachyotis). Okajimas Folia Anat. Jpn. 78 (4): 123–128. DOI: http://doi.org/10.2535/ofaj1936.78.4_12310.2535/ofaj1936.78.4_123Suche in Google Scholar PubMed

Emura S., Tamada A., Hayakawa D., Chen H. & Shoumura S. 2000a. Morphology of the dorsal lingual papillae in the black rhinoceros (Diceros bicornis). Anat. Histol. Embryol. 29 (6): 371–374. DOI: 10.1046/j.1439-0264.2000.00283.x10.1046/j.1439-0264.2000.00283.xSuche in Google Scholar PubMed

Emura S., Tamada A., Hayakawa D., Chen H. & Shoumura S. 2000b. Morphology of the dorsal lingual papillae in the Barbary sheep, Ammotragus lervia. Okajimas Folia Anat. Jpn. 77 (2-3): 39–45. DOI: 10.2535/ofaj1936.77.2-3_3910.2535/ofaj1936.77.2-3_39Suche in Google Scholar

Erdoğan S., Arias S.V. & Pérez W. 2015. Morphology of the lingual surface of South American fur seal (Arctocephalus australis) and sea lion (Otaria flavescens). Microsc. Res. Tech. 78 (2): 140–147. DOI: 10.1002/jemt.2245610.1002/jemt.22456Suche in Google Scholar

Erdoğan S., Arias S.V. & Pérez W. 2016a. Morphofunctional structure of the lingual papillae in three species of South American Camelids: alpaca, guanaco, and llama. Microsc. Res. Tech. 79 (2): 61–71. DOI: 10.1002/jemt.2260410.1002/jemt.22604Suche in Google Scholar

Erdoğan S., Lima M. & Pérez W. 2016b. Anatomical and scanning electron microscopic study of the tongue in the meerkat (Suricata suricatta, Schreber, 1776). Anat. Histol. Embryol. 45 (1): 51–59. DOI: 10.1111/ahe.12170.10.1111/ahe.12170Suche in Google Scholar

Goździewska-Harłajczuk K., Klećkowska-Nawrot J., Janeczek M. & Zawadzki M. 2015. Morphology of the lingual and buccal papillae in alpaca (Vicugna pacos) - light and scanning electron microscopy. Anat. Histol. Embryol. 44 (5): 345–360. DOI: 10.1111/ahe.1214710.1111/ahe.12147Suche in Google Scholar

Gregorin R. 2003. Comparative morphology of the tongue in freetailed bats (Chiroptera, Molosoide). Iheringia Ser. Zool. 93 (2): 213–221. DOI: doi:10.1590/S0073-47212003000200014doi:10.1590/S0073-47212003000200014Suche in Google Scholar

Harem M.K., Harem I.S., Sari E.K. & Aydin M.F. 2011. Light and scanning electron microscopic study of the dorsal lingual papillae of the Goitered gazelle (Gazelle subgutturosa). J. Anim. Vet. Adv. 10 (15): 1906–1913. DOI: 10.3923/javaa.2011.1906.191310.3923/javaa.2011.1906.1913Suche in Google Scholar

Ibira Y., Yokosuka H., Haga-Tsujimura M. & Yoshie S. 2013. Occurrence of gustducin-immunoreactive cells in von Ebner’s glands of guinea pigs. Histochem. Cell Biol. 140 (5): 567–574. DOI: 10.1007/s00418-013-1094-910.1007/s00418-013-1094-9Suche in Google Scholar

Inatomi M. & Kobayashi K. 1999. Comparative morphological studies on the tongue and lingual papillae of the Japanese black bear (Carnivora) and the mountain goat (Atriodactyla). Odontology 87 (3): 313–328. [in Japanese]Suche in Google Scholar

Iwasaki S. 2002. Evolution of the structure and function on the vertebrate tongue. J. Anat. 201 (1): 1–13. DOI: 10.1046/j.1469-7580.2002.00073.x10.1046/j.1469-7580.2002.00073.xSuche in Google Scholar

Iwasaki S., Asami T., Wanichanon 1996. Ultrastructural study of the dorsal lingual epithelium of the soft-shell turtle, Trionix cartilaginous (Cehlonia, Trionychidae). Anat. Rec. 246 (3): 305–316. PMID: 891545210.1002/(SICI)1097-0185(199611)246:3<305::AID-AR1>3.0.CO;2-XSuche in Google Scholar PubMed

Jabbar A.I. 2014. Macroscopical and microscopical observations of the tongue in the Iraqi goat (Capra hircus). Int. J. Adv. Res. 2 (6): 642–648.Suche in Google Scholar

Jackowiak H. & Godynicki S. 2007. Light and scanning electron microscopic study on the structure of the lingual papillae of the feathertail glider (Acrobates pygmeus, Burramyidae, Marsupialia). Anat. Rec. 290 (11): 1355–1365. DOI: 10.1002/ar.2060610.1002/ar.20606Suche in Google Scholar PubMed

Jackowiak H., Trzcielińska-Lorych J., Godynicki S. 2009. The microstructure of lingual papillae in the Egyptian fruit bat (Rousettus aegyptiacus) as observed by light microscopy and scanning electron microscopy. Arch. Histol. Cytol. 72 (1): 13–21. DOI: 10.1679/aohc.72.1310.1679/aohc.72.13Suche in Google Scholar PubMed

Kobayashi K., Jackowiak H., Frąckowiak H., Yoshimura K., Kumakura M. & Kobayashi K. 2005. Comparative morphological study on the tongue and lingual papillae of horses (Peris-sodactyla) and selected ruminantia (Atriodactyla). Ital. J. Anat. Embryol. 110 (Suppl. 1, n. 2): 55–63.Suche in Google Scholar

Kobayashi K., Kumakura M., Yoshimura K., Nonaka K., Murayama T. & Henneberg M. 2003. Comparative morphological study of the lingual papillae and their connective tissue cores of the koala. Anat. Embryol. (Berl.) 206 (4): 247–254. DOI: 10.1007/s00429-002-0296-z10.1007/s00429-002-0296-zSuche in Google Scholar PubMed

Kubota K., Kubota J., Fukuda N., Asakura S., Nakagava S. & Masui M. 1963. Comparative anatomical and neurohistological observations on the tongue of the marsupials. Anat. Rec. 147 (3): 337–353. DOI: 10.1002/ar.109147030510.1002/ar.1091470305Suche in Google Scholar PubMed

Kumar P., Kumar S. & Singh Y, 1998. Tongue papillae in goat: a scanning electron microscopic study. Anat. Histol. Embryol. 27 (6): 355–357. DOI: 10.1111/j.1439-0264.1998.tb00207.x10.1111/j.1439-0264.1998.tb00207.xSuche in Google Scholar PubMed

Kurtul I. & Atalgin S.H. 2008. Scanning electron microscopy study of the lingual papillae of the Saanen goat. Small Rumin. Res. 80 (1): 52–56. DOI: 10.1016/j.smallrumres.2008.09.00310.1016/j.smallrumres.2008.09.003Suche in Google Scholar

Mançanares C.A., Santos A.C., Piemonte M.V., Vasconcelos B.G., Carvalho A.F., Miglino M.A., Ambrosio C.E. & Assis Neto A.C. 2012. Macroscopic and microscopic analysis of the tongue of the common opossum (Didelphis marsupialis). Microsc. Res. Tech. 75 (10): 1329–1333. DOI: 10.1002/jemt.22070.10.1002/jemt.22070Suche in Google Scholar PubMed

Martinez M., Martinez F.E., Pinheiro P.F.F., Almeida C.C.D., Guida H.L. & Watanabe I. 1998. Light and scanning electron microscopic study of the vallate papillae of the opossum (Didelphis albiventris). Rev. Chil. Anat. 16 (1): 67–73. DOI: 10.4067/S0716-9868199800010000910.4067/S0716-98681998000100009Suche in Google Scholar

Mohebinia S. & Ghassemi F. 2013. Histological study of tongue in insectivore bat (Rhinopoma hardwickii). Adv. Environ. Biol. 7 (14): 4643–4648.Suche in Google Scholar

Munn A.J. & Dawson T.J. 2006. Forage fibre digestion, rates of feed passage and gut fill in juvenile and adult red kangaroos Macropus rufus Desmarest: why body size matters. J. Exp. Biol. 209: 1535–1647. DOI: 10.1242/jeb.0213710.1242/jeb.02137Suche in Google Scholar PubMed

Murtey M. D. & Ramasamy P. 2016. Sample preparations for scanning electron microscopy - life sciences. Chapter 8, pp. 161–185. DOI: 10.5772/61720. In: Janecek M. & Kral R. (eds), Modern Electron Microscopy in Physical and Life Sciences, InTech, CC BY 3.0 license, 298 pp. ISBN: 978-953-51-2252-4Suche in Google Scholar

Nonaka K., Zheng J.H. & Kobayashi K. 2008. Comparative morphological study on the lingual papillae and their connective tissue cores in rabbits. Okajimas Folia Anat. Jpn. 85 (2): 57–66. DOI: http://doi.org/10.2535/ofaj.85.5710.2535/ofaj.85.57Suche in Google Scholar PubMed

Okada S. & Schraufnagel D.E. 2005. Microvasculature of the lingual papillae of the common opossum (Didelphis marsupialis). Microsc. Microanal. 11 (Suppl. S02): 319–332. DOI: doi: 10.1017/S1431927605503660doi: 10.1017/S1431927605503660Suche in Google Scholar

Pastor J.F., Barbosa M. & de Paz F.J. 2008. Morphological study of the lingual papillae of the giant panda (Ailuropoda melanoleuca) by scanning electron microscopy. J. Anat. 212 (2): 99–105. DOI: 10.1111/j.1469-7580.2008.00850.x.10.1111/j.1469-7580.2008.00850.xSuche in Google Scholar PubMed PubMed Central

Parliament of the Republic of Poland: Ustawa z dnia 21 sierpnia 1997 o ochronie zwierzat. Dziennik Ustaw 1997 Nr 111 poz. 724 z pozn. zmianami. 2012. pp. 3445–3453. http://isap.sejm.gov.pl/DetailsServlet?id=WDU19971110724Suche in Google Scholar

Spicer S.C. & Henson J.G. 1967. Methods for localizing muco-substances in epithelial and connective tissue, pp. 78–112. In: Bajusz E. & Jasmin G. (eds), Series on Methods and Achievements in Experimental Pathology, Vol. 2. Investigative Techniques, S. Karger AG, Basel, Switzerland, 290 pp. ISBN: 978-3-8055-0522-2, 3-8055-0522-1Suche in Google Scholar

Staker L. 2006. The complete guide to the care of Macropods. Matilda‘s Publishing, 437 pp. ISBN: 0977575101, 978097757 5107Suche in Google Scholar

Trzcielińska-Lorych J., Jackowiak H., Skieresz-Szewczyk K. & Godynicki S. 2009. Morphology and morphometry of lingual papillae in adult and newborn egyptian fruit bats (Rousettus aegyptiacus). Anat. Histol. Embryol. 38 (5): 370–376. DOI: 10.1111/j.1439-0264.2009.00956.x10.1111/j.1439-0264.2009.00956.xSuche in Google Scholar PubMed

Ünsaldi E. 2010. Macroscopic and light microscopic structure of fungiform papillae on the tongue of squirrels (Sciurus vulgaris). Kafkas Univ. Vet. Fak. Derg. 16 (1): 115–118. DOI: 10.9775/kvfd.2009.53010.9775/kvfd.2009.530Suche in Google Scholar

Watanabe I.S., Dos Santos Haemmerle C.A., Dias F.J., Cury D.P., Da Silva M.C., Sosthines M.C., Dos Santos T.C., Guimaraes J.P. & Milino M.A. 2013. Structural characterization of the capybara (Hydrochaeris hydrochaeris) tongue by light, scanning and transmission electron microscopy. Microsc. Tes. Tech. 76 (2): 141–155. DOI: 10.1002/jemt.2214510.1002/jemt.22145Suche in Google Scholar PubMed

Windle B.C.A. & Parsons F.G. 1897. On the anatomy of Macropus rufus. J. Anat. Physiol. 32 (Pt 1): 119–134. PMCID: PMC1327962Suche in Google Scholar PubMed

Yoshimura K., Natsuki H., Shindoh J., Kobayashi K. & Kageyama I. 2009a. Light and scanning electron microscopic study on the tongue and lingual papillae of the hippopotamus, Hippopotamus amphibious amphibious. Anat. Rec. (Hoboken) 292: 921–934. DOI: 10.1002/ar.20915.10.1002/ar.20915Suche in Google Scholar PubMed

Yoshimura K., Shindoh J. & Kageyama I. 2013. Comparative morphology of the papillae linguales and their connective tissue cores in the tongue of the greater Japanese shrew-mole, Urotrichus talpoides. Anat. Histol. Embryol. 42 (1): 21–29. DOI: 10.1111/j.1439-0264.2012.01159.x10.1111/j.1439-0264.2012.01159.xSuche in Google Scholar PubMed PubMed Central

Yoshimura K., Shindoh J. & Kobayashi K. 2009b. Scanning electron microscopic study of the tongue and lingual papillae of the California sea lion, (Zalophus californianus californianus) Anat. Rec. 267 (2): 146–153. DOI: 10.1002/ar.1009310.1002/ar.10093Suche in Google Scholar PubMed

Zheng J.H. & Kobayashi K. 2006. Comparative morphological study on the lingual papillae and their connective tissue cores (CTC) in revees‘ Muntjac deer (Muntiacus reevesi). Ann. Anat. 188 (6): 555–564. DOI: 10.1016/j.aanat.2006.05.01410.1016/j.aanat.2006.05.014Suche in Google Scholar PubMed

Received: 2015-9-17
Accepted: 2016-5-6
Published Online: 2016-7-14
Published in Print: 2016-6-1

©2016 Institute of Zoology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. Molecular detection of Mycobacterium tuberculosis complex in the 8th century skeletal remains from the territory of Slovakia
  3. Cellular and Molecular Biology
  4. First report of microorganisms of Caucasus glaciers (Georgia)
  5. Cellular and Molecular Biology
  6. Codon optimization of Aspergillus niger feruloyl esterase and its expression in Pichia pastoris
  7. Botany
  8. Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess
  9. Botany
  10. No confirmation for previously suggested presence of diploid cytotypes of Sesleria (Poaceae) on the Balkan Peninsula
  11. Botany
  12. RCD1 homologues and their constituent WWE domain in plants: analysis of conservation through phylogeny methods
  13. Botany
  14. Nucleoli migration coupled with cytomixis
  15. Cellular and Molecular Biology
  16. Evaluation of appropriate reference gene for normalization of microRNA expression by real-time PCR in Lablab purpureus under abiotic stress conditions
  17. Zoology
  18. The fractal nature of the latitudinal biodiversity gradient
  19. Zoology
  20. A new species of Neoribates (Neoribates) (Acari: Oribatida: Parakalummidae) with key to the Neotropical species of the subgenus
  21. Zoology
  22. Diversity patterns of aquatic specialists and generalists: contrasts among two spring-fen mesohabitats and nearby streams
  23. Zoology
  24. Heteroptera (Insecta: Hemiptera) of the peat bogs of Belarusian Lakeland
  25. Cellular and Molecular Biology
  26. Cloning of monoacylglycerol o-acyltransferase 2 cDNA from a silkworm, Bombyx mori
  27. Zoology
  28. Biological aspect of the surface structure of the tongue in the adult red kangaroo (Macropus rufus) — light and scanning electron microscopy
  29. Zoology
  30. Status of the rose-ringed parakeet Psittacula krameri in Lisbon, Portugal
  31. Zoology
  32. Considerations on the vulnerability of the Eurasian water shrew Neomys fodiens to the presence of introduced brown trout Salmo trutta
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0082/pdf
Button zum nach oben scrollen