Startseite Lebenswissenschaften Somatic embryogenesis and in vitro shoot propagation of Gentianautriculosa
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Somatic embryogenesis and in vitro shoot propagation of Gentianautriculosa

  • Branka Vinterhalter , Nevena Mitić , Dragan Vinterhalter , Branka Uzelac und Dijana Krstić-Milošević EMAIL logo
Veröffentlicht/Copyright: 25. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 2

Abstract

Study describes protocols for in vitro propagation of Gentiana utriculosa L. via axillary shoot multiplication and indirect somatic embryogenesis. Shoot cultures were established from seedling epicotyl explants cultured on MS medium supplemented with 0.25 mg L−1 BA and 0.1 mg L−1 IAA. Medium containing 2% sucrose and 0.2 mg L−1 BA improved multiple shoot production, providing 2.3 shoots per explant. The highest rooting (29.6%) was obtained on medium with 1/2 MS mineral salts and 0.5 mg L−1 NAA. Somatic embryogenesis was induced using different explants, including immature seeds as well as leaves and roots from shoot cultures. Following auxin treatment with either 1.0 mg L−1 2,4-D (immature seeds and leaves) or 0.1 mg L−1 NAA (roots), explants produced embryogenic calli which upon transfer to plant growth regulator-free medium allowed embryo conversion into plantlets. The best embryogenic response (82%) was obtained in calli derived from leaves cultured with their abaxial surface in contact with medium, whereas the highest embryo conversion rate (68%) was recorded for calli induced on immature seed explants. Histological analysis in all explant types revealed development of proembryogenic cell complexes at callus periphery, giving rise to somatic embryos. The presence of embryos at various stages of development indicated asynchronous somatic embryogenesis in G. utriculosa. Derooted embryo-derived plantlets placed on medium with 0.2 mg L−1 BA multiplied further as shoot cultures.

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science and Technological Development Grant No. 173015.

References

Bach A. & Pawlowska B. 2003. Somatic embryogenesis in Gentiana pneumonanthe L. Acta Biol. Cracov. 45: 75–86.Suche in Google Scholar

Butuic-Keul A., S¸uteu A. & Deliu C. 2005. In vitro organogenesis of Gentiana punctata.Not.Bot.Hort. Agrobot. 33: 38–41.Suche in Google Scholar

Cai Y., Liu Y., Liu Z., Zhang F., Xiang F. & Xia G. 2009. High-frequency embryogenesis and regeneration of plants with high content of gentiopicroside from the Chinese medicinal plant Gentiana straminea Maxim. In Vitro Cell Dev. Biol. Plant 45: 730–739.10.1007/s11627-009-9225-7Suche in Google Scholar

Casanova E., Moysset L. & Trillas M.I. 2008. Effects of agar concentration and vessel closure on the organogenesis and hyperhydricity of adventitious carnation shoots. Biol. Plant. 52: 1–810.1007/s10535-008-0001-zSuche in Google Scholar

Chen J.-Y., Chen Q.-L., Xu D., Hao J.-G., Schläppi M. & Xu Z.-Q. 2009. Changes of gentiopicroside sintesis during somatic embryogenesis of Gentiana macrophylla. Planta Med. 75: 1618–1624.10.1055/s-0029-1185808Suche in Google Scholar

Dević M., Momčilović I., Krstić D., Maksimović V. & Konjević R. 2006. In vitro multiplication of willow gentian (Gentiana asclepiadea L.) and the production of gentiopicrin and mangiferin. Phyton 46: 45–54.Suche in Google Scholar

Dhawan O.P. & Lavania U.C. 1996. Enhancing the productivity of secondary metabolites via induced polyploidy: a review. Euphytica 87: 81– 89.10.1007/BF00021879Suche in Google Scholar

Drobyk N.M., Lyudmyla R.H., Mel’nyk V.M., Kravets N.B., Konvalyuk I.I., Twardovska M.O. & Kunakh V.A. 2015. In vitro manipulation and propagation of Gentiana L. species from the Ukrainian Flora, pp 45–79. In: Rybczyński J.J., Davey M.R. & Mikuła A. (eds), The Gentianaceae – Volume 2: Biotechnology and Applications, Springer-Verlag, Berlin, Heidelberg.10.1007/978-3-642-54102-5_2Suche in Google Scholar

Fiuk A. & Rybczyński J.J. 2007. The effect of several factors on somatic embryogenesis and plant regeneration in protoplast cultures of Gentiana kurroo (Royle). Plant Cell Tissue Org. Cult. 91: 263–271.10.1007/s11240-007-9293-5Suche in Google Scholar

Fiuk A. & Rybczyński J.J. 2008a. Morphogenic capability of Gentiana kurroo Royle seedling and leaf explants. Acta Physiol. Plant. 30: 157–166.10.1007/s11738-007-0104-8Suche in Google Scholar

Fiuk A. & Rybczyński J.J. 2008b. Genotype and plant growth regulator-dependent response of somatic embryogenesis from Gentiana spp. leaf explants. In Vitro Cell Dev. Biol. Plant 44: 90–99.10.1007/s11627-008-9124-3Suche in Google Scholar

Gamborg O.L., Miller R.A. & Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.10.1016/0014-4827(68)90403-5Suche in Google Scholar

Hayta S., Akgun I.H., Ganzera M., Bedir E. & Gurel A. 2011. Shoot proliferation and HPLC-determination of iridoid glycosides in clones of Gentiana cruciata L. Plant Cell Tissue Org. Cult. 107: 175–180.10.1007/s11240-011-9961-3Suche in Google Scholar

He T., Yang L. & Zhao Z. 2011. Embryogenesis of Gentiana straminea and assessment of genetic stability of regenerated plants using inter simple sequence repeat (ISSR) marker. Afr. J. Biotechnol. 10: 7604–7610.Suche in Google Scholar

Holobiuc I. & Catana R. 2012. Recurrent somatic embryogenesis in long-term cultures of Gentiana lutea L. as a source for synthetic seed production for medium-term preservation. Arch. Biol. Sci. 64: 809–817.10.2298/ABS1202809HSuche in Google Scholar

Hosokawa K., Nakano M., Oikawa Y. & Yamamura S. 1996. Adventitious shoot regeneration from leaf, stem and root explants of commercial cultivars of Gentiana. Plant Cell Rep. 15: 578–581.10.1007/BF00232456Suche in Google Scholar

Hosokawa K., Oikawa Z. & Zamamura S. 1998. Mass propagation of ornamental gentian in liquid medium. Plant Cell Rep. 17: 747–751.10.1007/s002990050477Suche in Google Scholar

Hostettmann-Kaldas M., Hostettmann K. & Sticher O. 1981. Xanthones, flavones and secoiridoids of american Gentiana species. Phytochem. 20: 443–446.10.1016/S0031-9422(00)84162-XSuche in Google Scholar

Hostettmann K. & Jackot–Guillarmod A. 1977. Xanthones et C-glucosides flavoniques du genre Gentiana (section Cyclostigma). Phytochem. 16: 481–482.10.1016/S0031-9422(00)94333-4Suche in Google Scholar

Ivanova M. & Van Staden J. 2011. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. PlantCellTissue Org.Cult. 104: 13–21.10.1007/s11240-010-9794-5Suche in Google Scholar

Janković T., Krstić-Milošević D., Aljančić I., Šavikin K., Menković N., Radanović D. & Milosavljević S. 2009. Phytochemical re-investigation of Gentiana utriculosa.Nat. Prod. Res. 23: 466–469.10.1080/14786410802079477Suche in Google Scholar PubMed

Köhlein F. 1991. Gentians. In: Jermyn J. (ed.), Tiber Press, Portland, Oregon, USA.Suche in Google Scholar

Landrein B., Lathe R., Bringmann M., Vouillot C., Ivakov A., Boudaoud A., Persson S. & Hammant O. 2013. Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in Arabidopsis. Curr. Biol. 23: 895–900.10.1016/j.cub.2013.04.013Suche in Google Scholar PubMed

Linsmaier E.M. & Skoog F. 1965. Organic growth factor requirement of tobacco tissue cultures. Physiol. Plant. 18: 100–128.10.1111/j.1399-3054.1965.tb06874.xSuche in Google Scholar

Lloyd G. & McCown B. 1980. Commercially-feasible micropropagation of mountain laurel-Kalmia latifolia by use of shoot-tip culture. Proc. Int. Plant. Prop. Soc. 30: 421–427.Suche in Google Scholar

Mikuła A. & Rybczyński J.J. 2001. Somatic embryogenesis of Gentiana genus I. The effect of preculture treatment and primary explant origin on somatic embryogenesis of Gentiana cruciata (L.), G. panonica (Scop.), and G. tibetica (King). Acta Physiol. Plant. 23: 15–25.10.1007/s11738-001-0017-xSuche in Google Scholar

Mikuła A., Skierski J. & Rybczyński J.J. 2002. Somatic embryogenesis of Gentiana genus III. Characterization of three-yearold embryogenic suspensions of G. panonica originated from various seedling explants. Acta Physiol. Plant. 24: 311–322.10.1007/s11738-002-0057-xSuche in Google Scholar

Mikuła A., Tykarska T., Zielińska M., Kura´s M. & Rybczyński J.J. 2004. Ultrastructural changes in zygotic embryos of Gentiana punctata L. during callus formation and somatic embryogenesis. Acta Biol. Cracov. Bot. 46: 109–120.Suche in Google Scholar

Mikuła A., Olas M., Sliwinska E. & Rybczyński J.J. 2008. Cryopreservation by encapsulation of Gentiana spp. cell suspensions maintains regrowth, embryogenic competence and DNA content. Cryo. Letters 29: 409–418.Suche in Google Scholar

Momčilović I., Grubišić D. & Nešković M. 1997. Micropropagation of four Gentiana species (G.lutea, G. cruciata, G. purpurea, G. acaulis). Plant Cell Tissue Org.Cult. 49: 141–144.10.1023/A:1005810430339Suche in Google Scholar

Morgan E.R., Butler R.M. & Bicknell R.A. 1997. In vitro propagation of Gentiana cerina and Gentiana corymbifera. New Zeal. J. Crop. Hort. 25: 1–8.10.1080/01140671.1997.9513981Suche in Google Scholar

Mujib A. & Samaj J. 2006. Somatic embryogenesis. Springer-Verlag, Berlin, Heidelberg, New York.10.1007/b136454Suche in Google Scholar

Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.10.1111/j.1399-3054.1962.tb08052.xSuche in Google Scholar

Nalawade S.M., Sagare A.P., Lee C.-Y., Kao C.-L. & Tsay H. S. 2003. Studies on tissue culture of Chinese medicinal plant resources in Taiwan and their sustainable utilization. Bot. Bull. Acad. Sin. 44: 79–98.Suche in Google Scholar

Nassour M., Chassériaux G. & Dorion N. 2003. Optimization of protoplastto-plant system for Pelargonium × hortorum ‘Alain’ and genetic stability of the regenerated plants. Plant Sci. 165: 121–128.10.1016/S0168-9452(03)00150-XSuche in Google Scholar

Pawlowska B. & Bach A. 2003. In vitro propagation of protected species Gentiana pneumonanthe L. for ornamental horticultural uses. Folia Horticult. 15: 113–122.Suche in Google Scholar

Petrova M., Stoilova T. & Zagorska N. 2006. Izoenzyme and protein patterns of in vitro micropropagated plantlets of Gentiana lutea L. after application of various growth regulators. Biotechnol. Biotechnol. Equip. 20: 15–19.10.1080/13102818.2006.10817297Suche in Google Scholar

Rybczyński J.J., Davey M.R., Tomiczak K., Niedziela A. & MikuRybczyński J.J., Davey M.R., Tomiczak K., Niedziela A. & Mikula A. 2015. Systems of plant regeneration in Gentian in vitro cultures, pp. 1–44. In: Rybczyński J.J., Davey M.R. & Mikuła A. 2015. Systems of plant regeneration in Gentian in vitro cultures, pp. 1–44. In: Rybczyński J.J., Davey M.R. & Mikuła A. (eds), The Gentianaceae – Volume 2: Biotechnology and Applications, Springer-Verlag, Berlin, Heidelberg.10.1007/978-3-642-54102-5_1Suche in Google Scholar

Sagare A.P., Suhasini K. & Krishnamurthy K.V. 1995. Histology of somatic embryo initiation and development in chickpea (Cicer arietinum L.). Plant Sci. 109: 87–93.10.1016/0168-9452(95)04141-GSuche in Google Scholar

Sachs J. 2011. A Text-Book of Botany: Morphological and Physiological. In: Bennett A.W. (ed.), Cambridge University Press, New York10.1017/CBO9781139105231Suche in Google Scholar

Sharma N., Chandel K.P.S. & Paul A. 1993. In vitro propagation of Gentiana kurroo – an indigenous plant of medicinal importance. Plant Cell Tissue Org. Cult. 34: 307–309.10.1007/BF00029722Suche in Google Scholar

Sheng X., Zhao Z., Yu H., Wang J., Xiaohui Z. & Gu H. 2011. Protoplast isolation and plant regeneration of different doubled haploid lines of cauliflower (Brassica oleracea var. botrytis). Plant Cell Tissue Org.Cult. 107: 513–520.10.1007/s11240-011-0002-zSuche in Google Scholar

Skrzypczak L., Wesolowska M. & Skrzypczak E. 1993. Gentiana species: in vitro culture, regeneration and production of secoiridoid glucosides, pp. 172–186. In: Bajaj Y.P.S. (ed.), Biotechnology in Agriculture and Forestry.10.1007/978-3-642-77004-3_12Suche in Google Scholar

Skrzypczak-Pietraszek E., Skrzypczak L. & Wesolowska M. 1993. Gentiana tibetica King from tissue culture. Sci. Pharm. 61: 287–296.Suche in Google Scholar

Tomiczak K., Mikuła A., Sliwinska E. & Rybczyński J.J. 2015. Autotetraploid plant regeneration by indirect somatic embryogenesis from leaf mesophyll protoplasts of diploid Gentiana decumbens L.f. In Vitro Cell Dev. Biol. Plant 51: 350– 359.10.1007/s11627-015-9674-0Suche in Google Scholar PubMed PubMed Central

Tutin T.G. 1972. Flora Europea. Cambridge University Press, London.Suche in Google Scholar

Vinterhalter B. & Vinterhalter D. 1998. In vitro propagation of spotted gentian Gentiana punctata L. Arch. Biol. Sci. 50: 177–182.Suche in Google Scholar

Vinterhalter B., Krstić-Milošević D., Janković T., MilojevićJ. & Vinterhalter D. 2012. In vitro propagation of Gentiana dinarica Beck. Cent. Eur. J. Biol. 7: 690–697.10.2478/s11535-012-0059-7Suche in Google Scholar

Viola U. & Franz C. 1989. In vitro propagation of Gentiana lutea. Planta Med. 55: 690.10.1055/s-2006-962308Suche in Google Scholar

Wesolowska M., Skrzypczak L. & Dudzińska R. 1985. Rodzaj Gentiana L. w kulturze in vitro. Acta. Polon. Pharm. 42: 79–83.Suche in Google Scholar

Yamada Y., Shoyama Y., Nishioka I., Kohda H., Namera A. & Okamoto T. 1991. Clonal micropropagation of Gentiana scabra Bunge var. buergeri Maxim. and examination of the homogenity concerning the gentiopicroside content. Chem. Pharmaceut. Bull. 39: 204–206.10.1248/cpb.39.204Suche in Google Scholar

Zhang Z. & Leung D.W.M. 2002. Factors influencing the growth of micropropagated shoots and in vitro flowering of gentian. Plant Growth Regul. 36: 245–251.10.1023/A:1016588302549Suche in Google Scholar

Received: 2015-9-23
Accepted: 2016-1-11
Published Online: 2016-3-25
Published in Print: 2016-2-1

© 2016 Institute of Botany, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Cellular and Molecular Biology
  2. Antimicrobial resistance and molecular characterisation of human campylobacters from Slovakia
  3. Cellular and Molecular Biology
  4. Application of violet pigment from Chromobacterium violaceum UTM5 in textile dyeing
  5. Cellular and Molecular Biology
  6. Chemical composition and antioxidant activity of some important betel vine landraces
  7. Cellular and Molecular Biology
  8. Development of conventional and real time PCR assay for detection and quantification of Rhizoctonia solani infecting pulse crops
  9. Botany
  10. Somatic embryogenesis and in vitro shoot propagation of Gentianautriculosa
  11. Botany
  12. Effect of cold treatment on germination of Saxifraga aizoides and S. paniculata: a comparison of central (eastern Alps) and southern populations (northern Apennines)
  13. Botany
  14. Environmental factors and phytohormones enhancing expression of α-momorcharin gene in Momordica charantia
  15. Botany
  16. Unveiling the kinematics of the avoidance response in maize (Zen mays) primary roots
  17. Zoology
  18. Review of the species allocated to the genus Satchellius (Oligochaeta: Lumbricidae) with description of a new species
  19. Cellular and Molecular Biology
  20. Cation metals specific hemocyanin exhibits differential antibacterial property in mud crab, Scylla serrata
  21. Zoology
  22. Dynamics of soil Collembola communities (Hexapoda: Collembola) along the mesoclimatic gradient in a deep karst valley
  23. Zoology
  24. Hidden invertebrate diversity – phytotelmata in Bromeliaceae from palm houses and florist wholesalers (Poland)
  25. Zoology
  26. Species composition of mosquitoes (Diptera: Culicidae) in relation to climate conditions in South-Eastern Slovakia
  27. Zoology
  28. Effect of supplemental feeds on liver and intestine of common carp (Cyprinus carpio) in semi-intensive rearing system: histological implications
  29. Zoology
  30. Trace element enrichment in the eggshells of Grus japonensis and its association witheggshell thinningin ZhalongWetland (Northeastern China)
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0020/pdf
Button zum nach oben scrollen