Startseite cDNA cloning, heterologous expression and characterization of a cell wall invertase from copper tolerant population of Elsholtzia haichowensis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

cDNA cloning, heterologous expression and characterization of a cell wall invertase from copper tolerant population of Elsholtzia haichowensis

  • Chen Liu EMAIL logo , Zhongrui Xu , Shenwen Cai , Luan Zhang und Zhiting Xiong
Veröffentlicht/Copyright: 8. Januar 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 70 Heft 8

Abstract

The main objective of the present study was to clone, heterologously express and characterize a novel cell wall invertase (FCWI) from a Cu tolerant population of Elsholtzia haichowensis. The full-length FCWI cDNA contained an open reading frame (ORF) of 1671 bp which encoded a 556-amino-acid protein. The theoretical molecular mass and pI of the deduced protein were 62.5 kDa and 9.29, respectively. Phylogenetic analysis showed that FCWI had a closer evolutionary relationship to cell wall invertase of dicot. FCWI was expressed in methylotrophic yeast Pichia pastoris and purified to near homogeneity. Recombinant FCWI enzyme had pH optima of 4.0 and temperature optima of 50◦C. Activity analyses in the presence of various metal cations indicated that FCWI was completely inhibited by Hg2+ (0%), while retained 77.4% activity when exposure to Cu2+. The Km and Vmax values of FCWI for hydrolyzing sucrose were 0.282 mM and 1.576 μkat/mg, respectively. This is the first report that the heterologous expression and characterization of a cell wall invertase from a Cu tolerant population of E. haichowensis. These results helped to understanding the characteristics of FCWI and its physiological role in the resistance mechanisms of Cu tolerant plants

References

Albacete A., Grosskinsky D.K. & Roitsch T. 2011. Trick and treat: a review on the function and regulation of plant invertases in the abiotic stress response. Phyton 50: 181-204.Suche in Google Scholar

Asthir B., Kaur A. & Basra A.S. 1998. Cultivar variation in heat stability and kinetic properties of soluble invertase in wheat grains. Acta Physiol. Plant. 20: 339-345.10.1007/s11738-998-0017-1Suche in Google Scholar

Cai S., Xiong Z., Li L., Li M., Zhang L., Liu C. & Xu Z. 2014. Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis. Ecotoxicology 23: 76-91.Suche in Google Scholar

Canam T., Unda F. & Mansfield S.D. 2008. Heterologous expression and functional characterization of two hybrid poplar cell-wall invertases. Planta 228: 1011-1019.10.1007/s00425-008-0801-6Suche in Google Scholar

Charng Y., Juang R., Su J. & Sung H. 1994. Partial purification and characterization of invertase isozymes from rice grains (Oryza sativa). Biochem. Mol. Biol. Int. 33: 607-615.Suche in Google Scholar

Cortés-Romero C., Martínez-Hernández A., Mellado-Mojica E., López M.G. & Simpson J. 2012. Molecular and functional characterization of novel fructosyltransferases and invertases from Agave tequilana. PLOS ONE 7: e35878.10.1371/journal.pone.0035878Suche in Google Scholar

Daly R. & Hearn M.T. 2005. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 18: 119-138.10.1002/jmr.687Suche in Google Scholar

Goetz M. & Roitsch T. 2000. Identification of amino acids essential for enzymatic activity of plant invertases. J. Plant Physiol. 157: 581-585.10.1016/S0176-1617(00)80115-7Suche in Google Scholar

Hanson J. & Smeekens S. 2009. Sugar perception and signaling-an update. Curr. Opin. Plant Biol. 12: 562-567.10.1016/j.pbi.2009.07.014Suche in Google Scholar PubMed

Hsieh C., Liu L., Yeh S., Chen C., Lin H., Sung H. & Wang A. 2006. Molecular cloning and functional identification of invertase isozymes from green bamboo Bambusa oldhamii. J. Agr. Food Chem. 54: 3101-3107.10.1021/jf052711sSuche in Google Scholar PubMed

Ji X., Van den Ende W., Van Laere A., Cheng S. & Bennett J. 2005. Structure, evolution, and expression of the two invertase gene families of rice. J. Mol. Evol. 60: 615-634.Suche in Google Scholar

Koch K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7: 235-246.10.1016/j.pbi.2004.03.014Suche in Google Scholar PubMed

LammensW., Le Roy K., Schroeven L., Van Laere A.,Rabijns A. & Van den Ende W. 2009. Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. J. Exp. Bot. 60: 727-740.10.1093/jxb/ern333Suche in Google Scholar PubMed

Le Roy K., Lammens W., Verhaest M., De Coninck B., Rabijns A., Van Laere A. & Van den Ende W. 2007. Unraveling the difference between invertases and fructan exohydrolases: a single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase1 into a fructan 1-exohydrolase. Plant Physiol. 145: 616-625.10.1104/pp.107.105049Suche in Google Scholar PubMed PubMed Central

Liu J. & Xiong Z. 2005. Differences in accumulation and physiological response to copper stress in three populations of Elsholtzia haichowensis S. Water Air Soil Poll. 168: 5-16.10.1007/s11270-005-0215-zSuche in Google Scholar

Proels R.K. & Roitsch T. 2009. Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm. J. Exp. Bot. 60: 1555-1567.Suche in Google Scholar

Roitsch T., Balibrea M.E., Hofmann M., Proels R. & Sinha A.K. 2003. Extracellular invertase: key metabolic enzyme and PR protein. J. Exp. Bot. 54: 513-524.10.1093/jxb/erg050Suche in Google Scholar

Roitsch T. & Gonzalez M.C. 2004. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 9: 606-613.10.1016/j.tplants.2004.10.009Suche in Google Scholar

Ruan Y., Jin Y., Yang Y., Li G. & Boyer J.S. 2010. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol. Plant. 3: 942-955.Suche in Google Scholar

Smeekens S., Ma J., Hanson J. & Rolland F. 2010. Sugar signals and molecular networks controlling plant growth. Curr. Opin. Plant Biol. 13: 273-278.10.1016/j.pbi.2009.12.002Suche in Google Scholar

Somogyi M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23.10.1016/S0021-9258(19)50870-5Suche in Google Scholar

Sturm A. 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol. 121: 1-8.Suche in Google Scholar

Tang S., Wilke B. & Huang C. 1999. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China. Plant Soil 209: 225-232.Suche in Google Scholar

Xiong Z., Wang T., Liu K., Zhang Z., Gan J., Huang Y. & Li M. 2008. Differential invertase activity and root growth between Cu-tolerant and non-tolerant populations in Kummerowia stipulacea under Cu stress and nutrient deficiency. Environ. Exp. Bot. 62: 17-27.10.1016/j.envexpbot.2007.07.001Suche in Google Scholar

Zhang L., Xiong Z., Xu Z., Liu C. & Cai S. 2014. Cloning and characterization of acid invertase genes in the roots of the metallophyte Kummerowia stipulacea (Maxim.) Makino from two populations: Differential expression under copper stress. Ecotox. Environ. Safe. 104: 87-95. 10.1016/j.ecoenv.2014.02.005Suche in Google Scholar PubMed

Received: 2015-1-23
Accepted: 2015-6-25
Published Online: 2016-1-8
Published in Print: 2015-8-1

© 2016

Artikel in diesem Heft

  1. Down into the Earth: microbial diversity of the deepest cave of the world
  2. Factors influencing synergistic antimicrobial activity of thymol and nisin against Shigella spp. in sugarcane juice
  3. Effects of low-temperature hardening on the biochemical response of winter oilseed rape seedlings inoculated with the spores of Leptosphaeria maculans
  4. Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana
  5. Transcriptome analysis for identification of indigo biosynthesis pathway genes in Polygonum tinctorium
  6. Different components of plant diversity suggest the protection of a large area for the conservation of a riparian ecosystem
  7. Anatomical adaptations of the desert species Stipa lagascae against drought stress
  8. Effects of ammonium ion on cell growth and biosynthesis of shikonin derivatives in callus tissues of Arnebia euchroma
  9. cDNA cloning, heterologous expression and characterization of a cell wall invertase from copper tolerant population of Elsholtzia haichowensis
  10. Construction of cDNA library from Prunus campanulata leaves and preliminary expressed sequence tag (EST) analysis during cold stress
  11. Phylogenetic utility of the geometric model of the body form in leeches (Clitellata: Hirudinida)
  12. Substrate choice by the alien snail Ferrissia fragilis (Gastropoda: Planorbidae) in an industrial area: A case study in a forest pond (Southern Poland)
  13. History of two critically endangered grassland snails (Pulmonata: Helicellinae) in the Czech Republic with first molecular data on extinct populations
  14. Monteustium marezensis gen. n., sp. n. and the first record of Italustiun eframi (Acari: Prostigmata: Erythraeidae: Balaustiinae) from Montenegro
  15. Lithobius (Ezembius) laevidentata sp. n., a new species (Chilopoda: Lithobiomorpha: Lithobiidae) from the Northwest region of China
  16. Aphids in jeopardy? Aphid communities on xerothermic habitats
  17. Habitat and weather requirements of diurnal raptors wintering in river valleys
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2015-0120/html
Button zum nach oben scrollen