Home Anatomical adaptations of the desert species Stipa lagascae against drought stress
Article
Licensed
Unlicensed Requires Authentication

Anatomical adaptations of the desert species Stipa lagascae against drought stress

  • Façal Boughalleb EMAIL logo , Raoudha Abdellaoui , Zied Hadded and Mohammed Neffati
Published/Copyright: January 8, 2016
Become an author with De Gruyter Brill

Abstract

Stipa lagascae R. & Sch. (perennial bunchgrass) is one of the most promising steppic species for arid and desert lands of Tunisia. The present study was designed to study the effect of drought on root and leaf anatomy, water relationship, and the growth of three- month-old S. lagascae plants, submitted to water deficit (5, 10, 15, 20, 30 days of withheld irrigation) and grown in pots in greenhouse conditions. The results show that water deficit treatments reduced the biomass accumulation (MS) and leaf water potential (Ψw) of plants. However, leaf relative water content (RWC) decreased significantly only at severe drought. The root’s anatomical features showed reduced root cross-sectional diameter under water deficit. Conversely, epidermis was unaffected by water stress. Moderate and/or severe water deficit (20-30 days) reduced significantly the cortex thickness, cortical cell size, stele diameter, xylem vessel diameter and the stele/root crosssectional ratio, while the number of cortical cells increased for severe water deficit. The cuticles and mesophyll of S. lagascae was thickened by moderate to severe drought and the entire lamina thickness was increased significantly by 5.8% only after 30 days of water deficit while epidermis was unaffected by water deficit. However, severe water deficit (30 days) decreased the width and the length of the bundle sheath. At the same time, the mesophyll cells size and both the xylem and phloem vessels diameter diminished by 12, 16.8 and 17.5%, respectively. Leaf rolling occurs as a response to water deficit and its level increases as the drought period is progressing in plants while reduced bulliform cells size occurred only at severe water deficit. Our findings suggest a complex network of root and leaf anatomical adaptations such as a reduced vessel size with lesser cortical and mesophyll parenchyma formation and increased leaf rolling. These proprieties are required for the maintenance of water potential and energy storage under water stress which can improve the resistance of S. lagascae to survive in extremely arid areas

References

Abernethy G.A., Fountain D.W. & Mcmanus M.T. 1998. Observations on the leaf anatomy of Festuca noyae-zelandiae and biochemical response to a water deficit. N. Z. J. Bot. 36: 113-123.10.1080/0028825X.1998.9512550Search in Google Scholar

Akram M. 2011. Growth and yield components of wheat under water stress of different growth stages. Bangl. J. Agril. Res. 36: 455-468.10.3329/bjar.v36i3.9264Search in Google Scholar

Alvarez J.M., Rocha J.F. & Machado S.R. 2008. Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): Structure in relation to function. Braz. Arch. Biol. Technol. 51: 113-119.10.1590/S1516-89132008000100014Search in Google Scholar

Arnold D.H. & Mauseth J.D. 1997. Effetct of environmental factors on developpement of wood. Amer. J. Bot. 86: 367-371.10.2307/2656758Search in Google Scholar

Athar H. & Ashraf M. 2005. Photosynthesis under drought stress, pp. 795-810. In: Pessarakli M. (ed.), Handbook Photosynthesis, second ed. CRC Press, New York, USA.10.1201/9781420027877.ch41Search in Google Scholar

Bacelar E.A., Correia C.M., Moutinho-Pereira J.M., Gon,calves B.C., Lopes J.I. & Torres-Pereira J.M. 2004. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol. 24: 233-239.10.1093/treephys/24.2.233Search in Google Scholar PubMed

Balsamo R.A., Willigen C.V., Bauer A.M. & Farrant J. 2006. Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Ann. Bot. 97: 985-991.10.1093/aob/mcl068Search in Google Scholar PubMed PubMed Central

Ben Ahmed C., Ben Rouina B. & Boukhris M. 2007. Effects of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia. Sci. Hort. 113: 267-277.10.1016/j.scienta.2007.03.020Search in Google Scholar

Bohnert H.J., Nelson D.E. & Jensen R.G. 1995. Adaptations to environmental stresses. Plant Cell 7: 1099-1111.10.1105/tpc.7.7.1099Search in Google Scholar PubMed PubMed Central

Bongi G. & Loreto F. 1989 Gas exchange properties of saltstressed olive (Olea europaea L.) leaves. Plant Physiol. 90: 1408-1416.10.1104/pp.90.4.1408Search in Google Scholar PubMed PubMed Central

Bosabalidis A.M. & Kofidis G. 2002. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci. 163: 375-379.10.1016/S0168-9452(02)00135-8Search in Google Scholar

Boughalleb F. & Hajlaoui H. 2011. Physiological and anatomical changes induced by drought in two olive cultivars (cv Zamlati and Chemlali). Acta Physiol. Plant. 33: 53-65.10.1007/s11738-010-0516-8Search in Google Scholar

Burghardt M., Burghardt A., Gall J., Rosenberger C. & Riederer M. 2008. Ecophysiological adaptations of water relations of Teucrium chamaedrys L. to the hot and dry climate of xeric limestone sites in Franconia (Southern Germany). Flora 203: 3-13.10.1016/j.flora.2007.11.003Search in Google Scholar

Burnett S.E., Thomas P.A. & Van Iersel M.W. 2000. Postegermination with PEG-8000 reduces growth of Salvia and manigolds. Hortscience 40: 675-67910.21273/HORTSCI.40.3.675Search in Google Scholar

Burnett S.E., Pennisi S.V., Thomas P.A. & van Iersel M.W. 2005. Controlled drought affects morphology and anatomy of Salvia splendens. J. Amer. Soc. Hort. Sci. 130: 775-781.10.21273/JASHS.130.5.775Search in Google Scholar

Bussotti F., Bottacci A., Bartolesi A., Grossoni P. & Tani C. 1995. Morpho-anatomical alterations in leaves collected from beech trees (Facus sylvatica L.) in conditions of natural water stress. Environ. Exp. Bot. 35: 201-213.10.1016/0098-8472(94)00040-CSearch in Google Scholar

Chartzoulakis K., Patakas A. & Bosabalidis A. 1999. Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environ. Exp. Bot. 42: 113-120.Search in Google Scholar

Child R.D., Summers J.E., Babij J., Farrent J.W. & Bruce D.M. 2003. Increased resistance to pod chatter is associated with changes in the vascular structure in pods of a resynthesized Brassica napus line. J. Exp. Bot. 54: 1919-1930.10.1093/jxb/erg209Search in Google Scholar PubMed

Clifford S.C., Arndt S.K., Popp M. & Jones H.G. 2002. Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought stress. J. Exp. Bot. 53: 131-138.Search in Google Scholar

Cutler D.F., Botha T. & Stevenson D.W. 2007. Plant Anatomy. An applied approach. Blackwell Publishing, Australia.Search in Google Scholar

Da Silva S., Castro E.M. & Soares A.M. 2003. Effects of different water regimes on the anatomical characteristics of roots of grasses promising for revegetation of areas surrounding hydroelectric reservoirs. Cienc Agrotec Lavras 27: 393-397.10.1590/S1413-70542003000200020Search in Google Scholar

Dickison W.C. 2000. Integrative Plant Anatomy. Harcourt Academic Press, San Diego, San Francisco, New York, Boston, London, Toronto, Sydney, Tokyo.Search in Google Scholar

Domingo R., Ruiz-Sanchez M.C., Sanchez-Blanco M.J. & Torrecillas A. 1999. Water relations, growth and yield of Fino lemon trees under regulated deficit irrigation. Irrig. Sci. 16: 115-123.Search in Google Scholar

El-Afry M.M., El-Nady M.F. & Abdelmonteleb E.B. 2012. Anatomical studies on drought-stressed wheat plants (Triticum aestivum L.) treated with some bacterial strains. Acta Biol. Szeg. 56: 165-174.Search in Google Scholar

Esau K. 1977. Anatomy of Seed Plants. 2nd ed. New York, John Wiley and Sons, pp. 351-353.Search in Google Scholar

Farouk S. & Amany A.R. 2012. Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egy. J. Biol. 14: 14-26.10.4314/ejb.v14i1.2Search in Google Scholar

Fini A., Guidib L., Ferrini F., Brunettia C., Di Ferdinandoa M., Biricolti S., Pollastri S., Calamaia L. & Tattini M. 2012. Drought stress has contrasting effects on antioxidant enzymes activity and phenyl propanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair. J. Plant Physiol. 169: 929-939.10.1016/j.jplph.2012.02.014Search in Google Scholar PubMed

Galle A., Haldimann P. & Feller U. 2007. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol. 174: 799-810.10.1111/j.1469-8137.2007.02047.xSearch in Google Scholar

Gindaba J., Rozanov A. & Negash L. 2004. Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress. For. Ecol. Manage. 201: 119-129.10.1016/j.foreco.2004.07.009Search in Google Scholar

Guerfel M., Baccouri O., Boujnah D., Chaibi W. & Zarrouk M. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci. Hortic. 119: 257-263.Search in Google Scholar

Jacobsen A.L., Ewers F.W., Pratt R.B., Paddock W.A. & Davis S.D. 2005. Do xylem fibers affect vessel cavitation resistance. Plant Physiol. 139: 546-556.10.1104/pp.104.058404Search in Google Scholar

James S.A. & Bell D.T. 1995. Morphology and anatomy of leaves of Eucalyptus camaldulensis clones: variation between geographically separated locations. Aust. J. Bot. 43: 415-433.10.1071/BT9950415Search in Google Scholar

Kadıo˘glu A. & Terzi R. 2007. A dehydration avoidance mechanism: Leaf rolling. Bot. Rev. 73: 290-302.10.1663/0006-8101(2007)73[290:ADAMLR]2.0.CO;2Search in Google Scholar

Kamel A. & Loser D.M. 1995. Contribution of carbohydrates and other solutes to osmotic adjustment in wheat leaves under water stress. J. Plant Physiol. 145: 363-366.10.1016/S0176-1617(11)81903-6Search in Google Scholar

Kofidis G., Bosabalidis A.M. & Chartzoulakis K. 2004. Leaf anatomical alterations induced by drought stress in two avocado cultivars. J. Biol. Res. 1: 115-120.Search in Google Scholar

Kramer J. & Boyer J.S. 1995. Water Relation of Plants and Soils. Elsevier Science (USA), Acad. Press, San Diego, CA, 495 pp.Search in Google Scholar

Kutlu N., Terzi R., Tekeli C., Senel G., Battal P. & Kadıo˘glu A. 2009. Changes in anatomical structure and levels of endogenous phytohormones during leaf rolling in Ctenanthe setosa. Turk. J. Biol. 33: 115-122.10.3906/biy-0806-6Search in Google Scholar

Lecoeur J. & Sinclair T.R. 1996. Field pea transpiration and leaf growth in response to soil water deficits. Crop Sci. 36: 331-335.10.2135/cropsci1996.0011183X003600020020xSearch in Google Scholar

Le Floch E., Neffati M., Chaieb M., Floret C. & Pontanier R. 1999. Rehabilitation experiment at Menel Habib, Southern Tunisia. Arid Soil Res. Rehab. 13: 357-368.Search in Google Scholar

Lersten N.R. & Curtis J.D. 2001. Idioblasts and other unusual internal foliar secretary structures in Scrophulariaceae. Plant Syst. Evol. 227: 63-73.10.1007/s006060170057Search in Google Scholar

Levitt J. 1972. Responses of Plants to Environmental Stresses. Academic Press, New York, pp. 31-47.Search in Google Scholar

Li F.L., Bao W.K. & Wu N. 2011. Morphological, anatomical and physiological responses of Campylotropis polyantha (Franch.) Schindl. seedlings to progressive water stress Sci. Hortic. 127: 436-443.Search in Google Scholar

Liu F. & St¨utzel H. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to water stress. Sci. Hortic. 102: 15-27.Search in Google Scholar

Lo Gullo M.A., Salleo S., Piaceri E.C. & Rossor .1995. Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Eniviron. 18: 661-669.10.1111/j.1365-3040.1995.tb00567.xSearch in Google Scholar

Lux A., Luxova M., Abe J. & Morita S. 2004. Root cortex: structural and functional variability and responses to environmental stress. Root Res. 13: 117-131.10.3117/rootres.13.117Search in Google Scholar

Makbul S., Turkmen Z., Co,skuncelebi K. & Beyazo˘glu O. 2008. Anatomical and pollen characters in the genus Epilobium L. (Onagraceae) from northeast anatolia. Acta Biol. Cracov. Bot. 50: 57-67.Search in Google Scholar

Makbul S., Saruhan G.N., Durmus N. & Guven S. 2011. Changes in anatomical and physiological parameters of soybean under drought stress. Turk. J. Bot. 35: 369-377.10.3906/bot-1002-7Search in Google Scholar

Matsuda K. & Rayan A. 1990. Anatomy: A key factor regulating plant tissue response to water stress. In: Kafternan F. (ed.), Environment Injury to Plants, San Diego: Academic Press, 290 pp.10.1016/B978-0-12-401350-6.50008-4Search in Google Scholar

Medrano H., Escalona J.M., Bota J., Gulias J. & Flexas J. 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal sonductance as a reference parameter. Ann Bot. 89: 895-905.10.1093/aob/mcf079Search in Google Scholar

Moulia B. 1994. Biomechanics of leaf rolling. Biomimetics 2: 267-281.Search in Google Scholar

Nawazish S., Hameed M. & Naurin S. 2006. Leaf anatomical adaptations of Cenchrus ciliaris L. from the salt range, Pakistan against drought stress. Pak J. Bot. 38: 1723-1730.Search in Google Scholar

Nicotra A.B., Babicka N. & Westoby N. 2002. Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia 130: 136-145.10.1007/s004420100788Search in Google Scholar

Niu G., Rodriguez D., Mendoza M., Jifon J. & Ganjegunte G. 2012. Reponses of Jatropha curcas to salt and drought stresses. Inter. J. Agronomy. Academic Editor, 7 pp.10.1155/2012/632026Search in Google Scholar

O’Connor T.G. 1991. Local extinction in perennial grasslands: A life-history approach. The Amer. Naturalist 137: 753-773.10.1086/285192Search in Google Scholar

O’Connor T.G. 1996. Hierarchical control over seedling recruitment of the bunch-grass Themeda triandra in a semi-arid savanna. J. App. Ecol. 33: 1094-1106.10.2307/2404689Search in Google Scholar

Ogbonnaya C.I., Nwalozie MC.., Roy-Macauley H. & Annerose D.J.M. 1998. Growth and water relations of Kenaf (Hibiscus cannabinus L.) under water deficit on a sandy soil. Ind. Crops Prod. 8: 65-76.10.1016/S0926-6690(97)10011-5Search in Google Scholar

Olmos E., Sanchez-Blanco M.J., Fernandez T. & Alarcon J.J. 2007. Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biol. 9: 77-84.10.1055/s-2006-924488Search in Google Scholar PubMed

Peña-Valdivia C.B., Sanchez-Urdaneta A.B., Trejo C., Aguirre R.J.R. & Cardenas E. 2005. Root anatomy of drought sensitive and tolerant maize (Zea mays L.) seedlings under different water potentials. Cereal Res. Comm. 33: 705-712.10.1556/CRC.33.2005.2-3.138Search in Google Scholar

Peña-Valdivia C.B. & Sanchez-Urdaneta A.B. 2009. Effects of substrate water potential in root growth of Agave salmiana Otto ex Salm-Dyck seedlings. Biol. Res. 42: 239-248.10.4067/S0716-97602009000200013Search in Google Scholar

Peña-Valdivia C.B., Sanchez-Urdaneta A.B., Rangel J.M.,Muńoz J.J., Garcia-Nava R. & Velazquez R.C. 2010. Anatomical root variations in response to water deficit: wild and domesticated common bean (Phaseolus vulgaris L.) Biol. Res. 43: 417-427.10.4067/S0716-97602010000400006Search in Google Scholar

Price A.H., Young E.M. & Tomos A.D. 1997. Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa). New Phytol. 137: 83-91.Search in Google Scholar

Reddy A.R., Chiatanya K.V. & Vivekanandan M. 2004. Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189-1202.10.1016/j.jplph.2004.01.013Search in Google Scholar PubMed

Rosales M., Cuellar-Ortiz S., Acosta-Gallegos J. & Cavarrabias A. 2012. Physiological traits related to terminal drought resistance in common bean Phaseolus vulgaris L. J. Sci. Food Agric. 93: 324-331.10.1002/jsfa.5761Search in Google Scholar PubMed

Sairam R.K. & Tyagi A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 6: 407-421.Search in Google Scholar

Saleem M., Lamkemeyer T., Sch¨utzenmeister M.T., Sakai H., Piepho H.P., Nordheim A. & Hochholdinge F. 2010. Specification of cortical parenchyma and stele of maize primary roots by asymmetric levels of auxin, cytokinin, and cytokininregulated proteins. Plant Physiol. 152: 4-18. Salisbury F.B. & Ross C.W. 1992. Plant Physiology. Wadsworth Publishing Company, Belmont.10.1104/pp.109.150425Search in Google Scholar PubMed PubMed Central

Sam O., Jerez E. & Varela M. 1996. Caracteristicas anatomicas de hojas de apa (Solanum tuberosum L.) y tomate (Lycopersycon esculentum Mill.) can diferentes grados de tolerancia a estres de humedad y temperatura. Cultivos Tropicales 17: 32-38.Search in Google Scholar

Sam O., Jerez E., Dell’Amico J. & Ruiz-Sanchez M.C. 2000. Water stress induced changes in anatomy of tomato leaf epidermis. Biol. Plant. 43: 275-277.10.1023/A:1002716629802Search in Google Scholar

Scholz H. 1991. Stipa tunetana, eine neue Artaus Tunesien, und das St. lagascae Aggregat (Gramineae). Willdenowia 26: 225-228.Search in Google Scholar

Schultz H.R. & Matthews M.A. 1988. Resistance to water transport in shoots of Vitis vinifera L. Plant Physiol. 88: 718-724.10.1104/pp.88.3.718Search in Google Scholar PubMed PubMed Central

Selim H. & El-Nady M. 2011. Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astro. 2: 1-9.Search in Google Scholar

Shao H.B., Chu L.Y., Jaleel C.A. & Zhao C.X. 2008. Water deficit stress induced anatomical changes in higher plants. C. R. Biol. 331: 215-225.10.1016/j.crvi.2008.01.002Search in Google Scholar PubMed

Shilei G., Sheng Z. & Hong W. 2002. Anatomical characters of stems and leaves of three lawn grasses. J. Trop. Subtrop. Bot. 10: 145-151.Search in Google Scholar

Sibounheuang V., Basnayake J. & Fukai S. 2006. Genotypic consistency in the expression of leaf water potential in rice (Oryza sativa L.). Field Crops Res. 97: 142-154.10.1016/j.fcr.2005.09.006Search in Google Scholar

Silva S., Soares A.M., Oliveira L.E.M. & Magalh˜aes P.C. 2001. Respostas fisiologicas de gramineas promissoras para revegeta ,c˜ao ciliar de reservatorios hidreletricos, submetidas `a defici,encia hidrica. Ci˛encia Agrotecnica 25: 124-133.Search in Google Scholar

Singh A., Shamim M. & Singh K.N. 2013. Genotypic variation in root anatomy, starch accumulation, and protein induction in upland rice (Oryza sativa) varieties under water stress. Agric. Res. 2: 24-30.Search in Google Scholar

Srivastava L.M. 2001. Plant growth and development. Digital stock Inc., 718 pp.Search in Google Scholar

Stiller V., Lafitte H.R. & Sperry J.S. 2003. Hydraulic properties of rice and the response of gas exchange to water stress. Plant Physiol. 132: 1698-1706.10.1104/pp.102.019851Search in Google Scholar PubMed PubMed Central

Stolf R., Medri M.E., Pimenta J.A., Boeger M.R.T., Dias J., Lemos N.G., de Oliveira M.C.N., Brogin R.L., Yamanaka N., Neumaier N., Farias J.R.B. & Nepomuceno A.L. 2009. Morpho-anatomical and micromorphometrical evaluations in soybean genotypes during water stress. Braz. Arch Biol. Technol. 52: 1313-1331.10.1590/S1516-89132009000600002Search in Google Scholar

Syvertsen J.F., Lloyd J., McConchie C., Kriedemann P.E. & Farquhar G.D. 1995. On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ. 18: 149-157.10.1111/j.1365-3040.1995.tb00348.xSearch in Google Scholar

Twumasi P., van Ieperen W., Woltering E.J., Emons A.M.C., Schel J.H.N., Schel J.F.H., van Meeteren U. & vanMarwijk D. 2005. Effects of water stress during growth on xylem anatomy, xylem functioning and vase life in three Zinnia elegans cultivars. Acta Hort. 669: 303-311.Search in Google Scholar

Uga Y., Okuno K. & Yano M. 2008. QTLs underlying natural variation in stele and xylem structures of rice root. Breeding Sci. 58: 7-14. van Ieperen W., Nijsse J., Keijzer C.J. & Van Meeteren U. 2001. Induction of air embolism in xylem conduits of pre-defined diameter. J. Exp. Bot. 52: 981-991.Search in Google Scholar

Vasellati V., Oesterheld M., Medan D. & Loreti J. 2001. Effects of flooding and drought on the anatomy of Paspalum dilatatum. Ann. Bot. 88: 355-360.10.1006/anbo.2001.1469Search in Google Scholar

Wang W., Vincour B. & Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14.Search in Google Scholar

Xiang J.J., Zhang G.H., Qian Q. & Hong-Wei X.H.W. 2012. Encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol. 159: 1488-1500.10.1104/pp.112.199968Search in Google Scholar

Zhu J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66-71.10.1016/S1360-1385(00)01838-0Search in Google Scholar

Zimmermann M.H. 1983. Xylem Structure and the Ascent of Sap. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 143 pp. 10.1007/978-3-662-22627-8Search in Google Scholar

Received: 2014-12-12
Accepted: 2015-7-20
Published Online: 2016-1-8
Published in Print: 2015-8-1

© 2016

Articles in the same Issue

  1. Down into the Earth: microbial diversity of the deepest cave of the world
  2. Factors influencing synergistic antimicrobial activity of thymol and nisin against Shigella spp. in sugarcane juice
  3. Effects of low-temperature hardening on the biochemical response of winter oilseed rape seedlings inoculated with the spores of Leptosphaeria maculans
  4. Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana
  5. Transcriptome analysis for identification of indigo biosynthesis pathway genes in Polygonum tinctorium
  6. Different components of plant diversity suggest the protection of a large area for the conservation of a riparian ecosystem
  7. Anatomical adaptations of the desert species Stipa lagascae against drought stress
  8. Effects of ammonium ion on cell growth and biosynthesis of shikonin derivatives in callus tissues of Arnebia euchroma
  9. cDNA cloning, heterologous expression and characterization of a cell wall invertase from copper tolerant population of Elsholtzia haichowensis
  10. Construction of cDNA library from Prunus campanulata leaves and preliminary expressed sequence tag (EST) analysis during cold stress
  11. Phylogenetic utility of the geometric model of the body form in leeches (Clitellata: Hirudinida)
  12. Substrate choice by the alien snail Ferrissia fragilis (Gastropoda: Planorbidae) in an industrial area: A case study in a forest pond (Southern Poland)
  13. History of two critically endangered grassland snails (Pulmonata: Helicellinae) in the Czech Republic with first molecular data on extinct populations
  14. Monteustium marezensis gen. n., sp. n. and the first record of Italustiun eframi (Acari: Prostigmata: Erythraeidae: Balaustiinae) from Montenegro
  15. Lithobius (Ezembius) laevidentata sp. n., a new species (Chilopoda: Lithobiomorpha: Lithobiidae) from the Northwest region of China
  16. Aphids in jeopardy? Aphid communities on xerothermic habitats
  17. Habitat and weather requirements of diurnal raptors wintering in river valleys
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2015-0125/html
Scroll to top button