Home Down into the Earth: microbial diversity of the deepest cave of the world
Article
Licensed
Unlicensed Requires Authentication

Down into the Earth: microbial diversity of the deepest cave of the world

  • Ieva Kieraite-Aleksandrova , Vilius Aleksandrovas and Nomeda Kuisiene EMAIL logo
Published/Copyright: January 8, 2016
Become an author with De Gruyter Brill

Abstract

In our work, microbial diversity of Krubera-Voronja cave was evaluated in the view of the frequency of human visits in different locations as well as the sampling depth. Sampling in this cave was performed at depths of 220 m to 1640 m. Cultivation-independent method, namely barcoded pyrosequencing of 16S rRNA gene, was used for this analysis. Our results demonstrated high bacterial diversity at the phylum and genus levels. We have shown that the bacterial diversity at the phylum level depends on both the sampling depth and the frequency of human visits in Krubera-Voronja cave. Frequently visited locations were more diverse at the phylum level than the rarely visited branches. The total number of bacterial genera both per phylum and per sample correlated with the frequency of human visits but not with the sampling depth. Some genera, found in Krubera-Voronja cave, seem to be absent or very rare in other caves. The present study represents the first report on the microbial diversity in Krubera-Voronja cave

References

Barton H.A., Taylor M.R. & Pace N.R. 2004. Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol. J. 21: 11-20.10.1080/01490450490253428Search in Google Scholar

Bastian F., Alabouvette C. & Saiz-Jimenez C. 2009. Bacteria and free-living amoeba in the Lascaux cave. Res. Microbiol. 160: 38-40.10.1016/j.resmic.2008.10.001Search in Google Scholar PubMed

Carmichael M.J., Carmichael S.K., Santelli C.M., Strom A. & Br¨auer S.L. 2013. Mn(II)-oxidizing bacteria are abundant and environmentally relevant members of ferromanganese deposits in caves of the Upper Tennessee River Basin. Geomicrobiol. J. 30: 779-800.10.1080/01490451.2013.769651Search in Google Scholar

Chakravorty S., Helb D., Burday M., Connell N. & Alland D. 2007. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69: 330-339.10.1016/j.mimet.2007.02.005Search in Google Scholar PubMed PubMed Central

Chan K.G. & Chong T.M. 2014. Prevalence of unclassified bacteria in tropical coastal waters of Malaysia revealed by metagenomic approach. Genome Announc. 2: e00419-14.10.1128/genomeA.00419-14Search in Google Scholar PubMed PubMed Central

Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117-143.10.1111/j.1442-9993.1993.tb00438.xSearch in Google Scholar

Cole J.R., Wang Q., Fish J.A., Chai B., McGarrell D.M., Sun Y., Brown C.T., Porras-Alfaro A., Kuske C.R. & Tiedje J.M. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42: D633- D642.10.1093/nar/gkt1244Search in Google Scholar PubMed PubMed Central

Cuezva S., Fernandez-Cortes A., Porca E., Pašić L., Jurado V., Hernandez-Marine M., Serrano-Ortiz P., Hermosin B., Cañaveras J.C., Sanchez-Moral S. & Saiz-Jimenez C. 2012. The biogeochemical role of Actinobacteria in Altamira Cave, Spain. FEMS Microbiol. Ecol. 81: 281-290.10.1111/j.1574-6941.2012.01391.xSearch in Google Scholar PubMed

Dillies M.A., Rau A., Aubert J., Hennequet-Antier C., Jeanmougin M., Servant N., Keime C., Marot G., Castel D., Estelle J., Guernec G., Jagla B., Jouneau L., Laloë D., Le Gall C., Schaëffer B., Le Crom S., Guedj M. & Jaffrézic F. 2013. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinformatics 14: 671-683.10.1093/bib/bbs046Search in Google Scholar PubMed

Edgar R.C., Haas B.J., Clemente J.C., Quince C. & Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.10.1093/bioinformatics/btr381Search in Google Scholar PubMed PubMed Central

Engel A.S. 2010. Microbial diversity of cave ecosystems, pp. 219-238. In: Loy A., Mandl M. & Barton L. (eds), Geomicrobiology: Molecular and Environmental Perspective, Springer Science+Business Media B.V., Dordrecht.10.1007/978-90-481-9204-5_10Search in Google Scholar

Engel A.S., Paoletti M.G., Beggio M., Dorigo L., Pamio A., Gomiero T., Furlan C., Brilli M., Dreon A.L., Bertoni R. & Squartini A. 2013. Comparative microbial community composition from secondary carbonate (moonmilk) deposits: implications for the Cansiliella servadeii cave hygropetric food web. Int. J. Speleol. 42: 181-192.10.5038/1827-806X.42.3.2Search in Google Scholar

Epure L., Meleg I.N., Munteanu C.-M., Roban R.D. & Moldovan O.T. 2014. Bacterial and fungal diversity of quaternary cave sediment deposits. Geomicrobiol. J. 31: 116-127.10.1080/01490451.2013.815292Search in Google Scholar

Gan H.Y., Gan H.M., Tarasco A.M., Busairi N.I., Barton H.A., Hudson A.O. & Savka M.A. 2014. Whole-genome sequences of five oligotrophic bacteria isolated from deep within Lechuguilla Cave, New Mexico. Genome Announc. 2: e01133-14.10.1128/genomeA.01133-14Search in Google Scholar PubMed PubMed Central

Griffin D.W., Gray M.A., Lyles M.B. & Northup D.E. 2014. The transport of nonindigenous microorganisms into caves by human visitation: a case study at Carlsbad Caverns National Park. Geomicrobiol. J. 31: 175-185.10.1080/01490451.2013.815294Search in Google Scholar

Groth I., Schumann P., Laiz L., Sanchez-Moral S., Cańveras J.C. & Saiz-Jimenez C. 2001. Geomicrobiological study of the Grotta dei Cervi, Porto Badisco, Italy. Geomicrobiol. J. 18: 241-258.Search in Google Scholar

Jones D.S., Schaperdoth I. & Macalady J.L. 2014. Metagenomic evidence for sulfide oxidation in extremely acidic cave biofilms. Geomicrobiol. J. 31: 194-204.10.1080/01490451.2013.834008Search in Google Scholar

Jurado V., Laiz L., Rodriguez-Nava V., Boiron P., Boiron P., Hermosin B., Sanchez-Moral S. & Saiz-Jimenez C. 2010. Pathogenic and opportunistic microorganisms in caves. Int. J. Speleol. 39: 15-24.10.5038/1827-806X.39.1.2Search in Google Scholar

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M. & Glöckner F.O. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41: e1.10.1093/nar/gks808Search in Google Scholar PubMed PubMed Central

Kodama Y., Shumway M. & Leinonen R. 2012. The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res. 40 (Database Issue): D54-D56.10.1093/nar/gkr854Search in Google Scholar PubMed PubMed Central

Kumaresan D.,Wischer D., Stephenson J., Hillebrand-Voiculescu A. & Murrell J.C. 2014. Microbiology of Movile Cave a chemolithoautotrophic ecosystem. Geomicrobiol. J. 31: 186-193.10.1080/01490451.2013.839764Search in Google Scholar

McLellan S.L. & Eren A.M. 2014. Discovering new indicators of fecal pollution. Trends Microbiol. 22: 697-706.10.1016/j.tim.2014.08.002Search in Google Scholar PubMed PubMed Central

Northup D.E. & Lavoie K.H. 2001. Geomicrobiology of caves: a review. Geomicrobiol. J. 18: 199-222.10.1080/01490450152467750Search in Google Scholar

Northup D.E., Melim L.A., Spilde M.N., Hathaway J.J.M., Garcia M.G., Moya M., Stone F.D., Boston P.J., Dapkevicius M.L.N.E. & Riquelme C. 2011. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology 11: 601-618.10.1089/ast.2010.0562Search in Google Scholar PubMed PubMed Central

Ortiz M., Neilson J.W., Nelson W.M., Legatzki A., Byrne A., Yu Y., Wing R.A., Soderlund C.A., Pryor B.M., Pierson III L.S. & Maier R.M. 2013. Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ. Microb. Ecol. 65: 371-383.10.1007/s00248-012-0143-6Search in Google Scholar PubMed

Porat I., Vishnivetskaya T.A., Mosher J.J., Brandt C.C., Yang Z.K., Brooks S.C., Liang L., Drake M.M., Podar M., Brown S.D., Palumbo A.V. 2010. Characterization of archaeal community in contaminated and uncontaminated surface stream sediments. Microb. Ecol. 60: 784-795.10.1007/s00248-010-9734-2Search in Google Scholar PubMed PubMed Central

Porter M.L., Engel A.S., Kane T.C. & Kinkle B.K. 2009. Productivity-diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int. J. Speleol. 38: 27-40.10.5038/1827-806X.38.1.4Search in Google Scholar

Portillo M.C., Gonzalez J.M. & Saiz-Jimenez C. 2008. Metabolically active microbial communities of yellow and grey colonizations on the walls of Altamira Cave, Spain. J. Appl. Microbiol. 104: 681-691.10.1111/j.1365-2672.2007.03594.xSearch in Google Scholar PubMed

Portillo M.C., Saiz-Jimenez C. & Gonzalez J.M. 2009. Molecular characterization of total and metabolically active bacterial communities of “white colonizations” in the Altamira Cave, Spain. Res. Microbiol. 160: 41-47.10.1016/j.resmic.2008.10.002Search in Google Scholar PubMed

Schabereiter-Gurtner C., Saiz-Jimenez C., Pińar G., Lubitz W. & Rölleke S. 2002. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities. FEMS Microbiol. Lett. 211: 7-11.10.1111/j.1574-6968.2002.tb11195.xSearch in Google Scholar PubMed

Sendra A. & Reboleira A.S.P.S. 2012. The world’s deepest subterranean community Krubera-Voronja Cave (Western Caucasus). Int. J. Speleol. 41: 221-230.10.5038/1827-806X.41.2.9Search in Google Scholar

Studholme D.J., Jackson R.A. & Leak D.J. 1999. Phylogenetic analysis of transformable strains of thermophilic Bacillus species. FEMS Microbiol. Lett. 172: 85-90.10.1111/j.1574-6968.1999.tb13454.xSearch in Google Scholar PubMed

Received: 2015-4-20
Accepted: 2015-8-18
Published Online: 2016-1-8
Published in Print: 2015-8-1

© 2016

Articles in the same Issue

  1. Down into the Earth: microbial diversity of the deepest cave of the world
  2. Factors influencing synergistic antimicrobial activity of thymol and nisin against Shigella spp. in sugarcane juice
  3. Effects of low-temperature hardening on the biochemical response of winter oilseed rape seedlings inoculated with the spores of Leptosphaeria maculans
  4. Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana
  5. Transcriptome analysis for identification of indigo biosynthesis pathway genes in Polygonum tinctorium
  6. Different components of plant diversity suggest the protection of a large area for the conservation of a riparian ecosystem
  7. Anatomical adaptations of the desert species Stipa lagascae against drought stress
  8. Effects of ammonium ion on cell growth and biosynthesis of shikonin derivatives in callus tissues of Arnebia euchroma
  9. cDNA cloning, heterologous expression and characterization of a cell wall invertase from copper tolerant population of Elsholtzia haichowensis
  10. Construction of cDNA library from Prunus campanulata leaves and preliminary expressed sequence tag (EST) analysis during cold stress
  11. Phylogenetic utility of the geometric model of the body form in leeches (Clitellata: Hirudinida)
  12. Substrate choice by the alien snail Ferrissia fragilis (Gastropoda: Planorbidae) in an industrial area: A case study in a forest pond (Southern Poland)
  13. History of two critically endangered grassland snails (Pulmonata: Helicellinae) in the Czech Republic with first molecular data on extinct populations
  14. Monteustium marezensis gen. n., sp. n. and the first record of Italustiun eframi (Acari: Prostigmata: Erythraeidae: Balaustiinae) from Montenegro
  15. Lithobius (Ezembius) laevidentata sp. n., a new species (Chilopoda: Lithobiomorpha: Lithobiidae) from the Northwest region of China
  16. Aphids in jeopardy? Aphid communities on xerothermic habitats
  17. Habitat and weather requirements of diurnal raptors wintering in river valleys
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2015-0127/html
Scroll to top button