Home Technology Synthesis of speed controllers by the polynomial equations method for an unstable electromechanical object
Article
Licensed
Unlicensed Requires Authentication

Synthesis of speed controllers by the polynomial equations method for an unstable electromechanical object

  • Vladyslav Markov

    Associate professor. Graduated from NTU «KhPI» in 1994, received a PhD degree in 2001.

    EMAIL logo
    and Yevhen Honcharov

    Associate professor. Graduated from NTU «KhPI» in 2006, received a PhD degree in 2016.

Published/Copyright: November 5, 2024

Abstract

The article shows the possibility of synthesis of speed controllers by the polynomial equations method for a two-mass initially unstable object. The instability is caused by the non-linear nature of the friction load with so-called falling section. The low – order and full-order speed controllers with motor speed feedback which provide acceptable quality control indicators are synthesized. Analytical expressions for finding the parameters of the controllers are given, and computer simulations are also presented. A conclusion was made about the preference of using the low-order controller.

Zusammenfassung

Der Artikel zeigt die Möglichkeit der Synthese von Geschwindigkeitsreglern nach der Methode der Polynomgleichungen für ein zunächst instabiles Objekt mit zwei Massen. Die Instabilität wird durch die nichtlineare Natur der Reibungslast mit dem sogenannten fallenden Abschnitt verursacht. Es wurden unvollständige und vollständige Drehzahlregler mit Motordrehzahlrückführung synthetisiert, die akzeptable Indikatoren für die Regelqualität liefern. Es werden analytische Ausdrücke zum Ermitteln der Parameter der Regler angegeben und auch die Computermodellierung vorgestellt. Es wurde eine Schlussfolgerung über den Vorteil der Verwendung eines unvollständigen Ordnungsreglers gezogen.


Corresponding author: Vladyslav Markov, Department оf Applied Electrical Engineering, National Technical University Kharkiv Polytechnic Institute, Kharkiv, Ukraine, E-mail: 

About the authors

Vladyslav Markov

Associate professor. Graduated from NTU «KhPI» in 1994, received a PhD degree in 2001.

Yevhen Honcharov

Associate professor. Graduated from NTU «KhPI» in 2006, received a PhD degree in 2016.

  1. Research ethics: We strictly adhere to research ethics. In particular, we do not allow plagiarism and the use of other people's results without citation.

  2. Informed consent: Not applicable.

  3. Author contributions: Both authors made significant contributions to the work.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: No competing interests.

  6. Research funding: No research funding.

  7. Data availability: Yes, all data is available.

References

[1] V. B. Klepikov, Dynamika electromekhanichnykh System z nelyneinym tertyam: monographia/V.B. Klepikov. – Kharkiv: Vydvnytstvo “Pidruchnyk” NTU KhPI, Kharkiv, Vydavnytstvo, 2014, p. 408.Search in Google Scholar

[2] H. Kwakernaak and M. Sebek, “Polynomial J-spaectral factorization,” IEEE Trans. Autom. Control, vol. AC-38, pp. 315–328, 1994.10.1109/9.272326Search in Google Scholar

[3] M. J. Grimble and V. Kucera, Polynomial Methods for Control Systems Design, Berlin, Springer, 1996.10.1007/978-1-4471-1027-9Search in Google Scholar

[4] D. Henrion, G. Garcia, and S. Tarbouriech, “Piecewise-linear robust control of systems with input saturation,” Eur. J. Control, vol. 5, no. 1, pp. 157–166, 1995. https://doi.org/10.1016/s0947-3580(99)70149-4.Search in Google Scholar

[5] M. Sternad, M. Johansson, and J. Rutstrom, Inversion of Loudspeaker Dynamics by Polynomial LQ Feedforward Control. IFAC Symposium on Robust Control Design, Prague, Czech Republic, 2000.10.1016/S1474-6670(17)36310-3Search in Google Scholar

[6] D. Henrion and M. Sebek, “An algorithm for polynomial matrix factor extraction,” Int. J. Control, vol. 73, no. 8, pp. 686–695, 2000. https://doi.org/10.1080/002071700403457.Search in Google Scholar

[7] M. J. Grimble, Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems, New York, Wiley, 2006.10.1002/9780470020753Search in Google Scholar

[8] M. Sebek and M. Hromčík, Polynomial Design Methods. Volume17, Issue8. Special Issue: Polynomial Design Methods, 2007, pp. 679–681.10.1002/rnc.1126Search in Google Scholar

[9] G. Singh and I. Singh, “Solving some differential equations arising in electric engineering using hermite polynomials,” J. Sci. Res., vol. 12, pp. 517–523, 2020. https://doi.org/10.3329/jsr.v12i4.45686.Search in Google Scholar

Received: 2024-07-09
Accepted: 2024-08-29
Published Online: 2024-11-05
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/auto-2024-0092/html
Scroll to top button