Abstract
We prove that sausages are the family of ‘extremal sets’ in relation to certain linear improvements of Minkowski’s first inequality when working with projection/sections assumptions. In particular they characterize the equality cases of the corresponding linear refinements of both the isoperimetric inequality and Urysohn’s inequality. We also characterize sausages by algebraic properties of the roots of Steiner polynomials, in which other functionals of convex bodies such as the inradius, the mean width or the diameter are involved.
Acknowledgements
The author would like to thank Prof. M. A. Hernández Cifre for her very valuable advice and helpful suggestions during the preparation of this paper.
Funding
Partially supported by MINECO-FEDER project MTM2012-34037 and MINECO Severo Ochoa project SEV-2011-0087
References
[1] U. Betke, M. Henk, J. M. Wills, Sausages are good packings. Discrete Comput. Geom. 13 (1995), 297–311. MR1318779 Zbl 0829.5201010.1007/BF02574046Search in Google Scholar
[2] W. Blaschke, Vorlesungen über Integralgeometrie. Deutscher Verlag der Wissenschaften, Berlin 1955. MR0076373 Zbl 0066.40703Search in Google Scholar
[3] T. Bonnesen, Les problèmes des isopérimètres et des isépiphanes. Gauthier-Villars, Paris 1929. Zbl 55.0431.08Search in Google Scholar
[4] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper. Springer 1974. MR0344997 Zbl 0277.52001Search in Google Scholar
[5] K. Böröczky, Jr., M. Henk, Radii and the sausage conjecture. Canad. Math. Bull. 38 (1995), 156–166. MR1335092 Zbl 0833.5200410.4153/CMB-1995-022-5Search in Google Scholar
[6] B. V. Dekster, The sausage conjecture holds for convex hulls of moderately bent sausages. Acta Math. Hungar. 73 (1996), 277–285. MR1428035 Zbl 0929.5201410.1007/BF00052904Search in Google Scholar
[7] V. I. Diskant, A counterexample to an assertion of Bonnesen and Fenchel. Ukrain. Geom. Sb. no. 27 (1984), 31–33. MR767414 Zbl 0557.52006Search in Google Scholar
[8] R. J. Gardner, The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. (N.S.)39 (2002), 355–405. MR1898210 Zbl 1019.2600810.1090/S0273-0979-02-00941-2Search in Google Scholar
[9] R. J. Gardner, Geometric tomography, volume 58 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2006. MR2251886 Zbl 1102.52002Search in Google Scholar
[10] A. Giannopoulos, Convex geometric analysis. Private notes (unpublished manuscript), 2009, www.math.uoc.gr/~apostolo/notes.ps.Search in Google Scholar
[11] P. M. Gruber, Convex and discrete geometry. Springer 2007. MR2335496 Zbl 1139.52001Search in Google Scholar
[12] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer 1957. MR0102775 Zbl 0078.3570310.1007/978-3-642-94702-5Search in Google Scholar
[13] A. Hajnal, L. F. Tóth, Research problems. Period. Math. Hungar. 6 (1975), 197–199. MR155359210.1007/BF02018822Search in Google Scholar
[14] M. Henk, M. A. Hernández Cifre, On the location of roots of Steiner polynomials. Bull. Braz. Math. Soc. (N.S.)42 (2011), 153–170. MR2774179 Zbl 1230.5201010.1007/s00574-011-0008-5Search in Google Scholar
[15] M. A. Hernández Cifre, E. Saorín, Differentiability of quermassintegrals: a classification of convex bodies. Trans. Amer. Math. Soc. 366 (2014), 591–609. MR3130309 Zbl 1296.5200210.1090/S0002-9947-2013-05723-6Search in Google Scholar
[16] M. A. Hernández Cifre, J. Yepes Nicolás, Refinements of the Brunn–Minkowski inequality. J. Convex Anal. 21 (2014), 727–743. MR3243816 Zbl 1304.52003Search in Google Scholar
[17] K. Leichtweiss, Konvexe Mengen. VEB Deutscher Verlag der Wissenschaften, Berlin 1980. MR559138 Zbl 0442.52001 Zbl 0427.5200110.1007/978-3-642-95335-4Search in Google Scholar
[18] D. Ohmann, Über den Brunn–Minkowskischen Satz. Comment. Math. Helv. 29 (1955), 215–222. MR0070203 Zbl 0065.1520510.1007/BF02564280Search in Google Scholar
[19] E. Saorín Gómez, J. Yepes Nicolás, Linearity of the volume. Looking for a characterization of sausages. J. Math. Anal. Appl. 421 (2015), 1081–1100. MR3258308 Zbl 1300.5200810.1016/j.jmaa.2014.07.060Search in Google Scholar
[20] R. Schneider, Convex bodies: the Brunn–Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2014. MR3155183 Zbl 1287.52001Search in Google Scholar
© 2017 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Ricci solitons on four-dimensional Lorentzian Walker manifolds
- The exterior splash in PG(6, q): carrier conics
- Central figure-8 cross-cuts make surfaces cylindrical
- Vieta’s formulae for regular polynomials of a quaternionic variable
- On characterizations of sausages via inequalities and roots of Steiner polynomials
- On maximal symplectic partial spreads
- Helly numbers of algebraic subsets of ℝd and an extension of Doignon’s Theorem
- A maximum problem of S.-T. Yau for variational p-capacity
- Drapeable unit arcs fit in the unit 30° sector
- Uniform Lie algebras and uniformly colored graphs
- A Krasnosel’skii-type theorem for an enlarged class of orthogonal polytopes
Articles in the same Issue
- Frontmatter
- Ricci solitons on four-dimensional Lorentzian Walker manifolds
- The exterior splash in PG(6, q): carrier conics
- Central figure-8 cross-cuts make surfaces cylindrical
- Vieta’s formulae for regular polynomials of a quaternionic variable
- On characterizations of sausages via inequalities and roots of Steiner polynomials
- On maximal symplectic partial spreads
- Helly numbers of algebraic subsets of ℝd and an extension of Doignon’s Theorem
- A maximum problem of S.-T. Yau for variational p-capacity
- Drapeable unit arcs fit in the unit 30° sector
- Uniform Lie algebras and uniformly colored graphs
- A Krasnosel’skii-type theorem for an enlarged class of orthogonal polytopes