Home Vieta’s formulae for regular polynomials of a quaternionic variable
Article
Licensed
Unlicensed Requires Authentication

Vieta’s formulae for regular polynomials of a quaternionic variable

  • Fabio Vlacci EMAIL logo
Published/Copyright: June 9, 2017
Become an author with De Gruyter Brill

Abstract

Vieta’s classical formulae explicitly determine the coefficients of a polynomial p ∈ 𝔽[x] in terms of the roots of p, where 𝔽 is any commutative ring. In this paper, Vieta’s formulae are obtained for slice-regular polynomials over the noncommutative algebra of quaternions, by an argument which essentially relies on induction, without invoking quasideterminants or noncommutative symmetric functions.

MSC 2010: 26C10; 30C15; 46F15; 32A45; 46L52

Communicated by: G. Gentili


Funding

The author was partially supported by Progetto MIUR di Rilevante Interesse Nazionale 2010–2011 “Varietà reali e complesse: geometria, topologia e analisi armonica” and by G.N.S.A.G.A of Istituto nazionale di Alta Matematica I.N.d.A.M. “F. Severi”

References

[1] A. Connes, A. Schwarz, Matrix Vieta theorem revisited. Lett. Math. Phys. 39 (1997), 349–353. MR1449580 Zbl 0874.1501010.1023/A:1007373114601Search in Google Scholar

[2] C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions. Duke Math. J. 32 (1965), 139–148. MR0173012 Zbl 0173.0900110.1215/S0012-7094-65-03212-6Search in Google Scholar

[3] M. K. Fung, On a Simple Derivation of the Noncommutative Vieta Theorem. Chinese J. of Physics44 (2006), 341–347.Search in Google Scholar

[4] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, Quasideterminants. Adv. Math. 193 (2005), 56–141. MR2132761 Zbl 1079.1500710.1016/j.aim.2004.03.018Search in Google Scholar

[5] I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, J.-Y. Thibon, Noncommutative symmetric functions. Adv. Math. 112 (1995), 218–348. MR1327096 Zbl 0831.0506310.1006/aima.1995.1032Search in Google Scholar

[6] I. Gelfand, V. S. Retakh, Determinants of matrices over noncommutative rings. Funktsional. Anal. i Prilozhen. 25 (1991), 13–25, 96. MR1142205 Zbl 0748.1500510.1007/BF01079588Search in Google Scholar

[7] I. Gelfand, V. S. Retakh, Theory of noncommutative determinants, and characteristic functions of graphs. Funktsional. Anal. i Prilozhen. 26 (1992), 1–20, 96. MR1209940 Zbl 0799.1500310.1007/BF01075044Search in Google Scholar

[8] I. Gelfand, V. Retakh, Noncommutative Vieta theorem and symmetric functions. In: The Gelfand Mathematical Seminars, 1993–1995, 93–100, Birkhäuser 1996. MR1398918 Zbl 0865.0507410.1007/978-1-4612-4122-5Search in Google Scholar

[9] I. Gelfand, V. Retakh, Quasideterminants. I. Selecta Math. (N.S.)3 (1997), 517–546. MR1613523 Zbl 0919.1601110.1007/s000290050019Search in Google Scholar

[10] G. Gentili, C. Stoppato, Zeros of regular functions and polynomials of a quaternionic variable. Michigan Math. J. 56 (2008), 655–667. MR2490652 Zbl 1184.3004810.1307/mmj/1231770366Search in Google Scholar

[11] G. Gentili, C. Stoppato, Power series and analyticity over the quaternions. Math. Ann. 352 (2012), 113–131. MR2885578 Zbl 1262.3005310.1007/s00208-010-0631-2Search in Google Scholar

[12] G. Gentili, D. C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable. C. R. Math. Acad. Sci. Paris342 (2006), 741–744. MR2227751 Zbl 1105.3003710.1016/j.crma.2006.03.015Search in Google Scholar

[13] G. Gentili, D. C. Struppa, A new theory of regular functions of a quaternionic variable. Adv. Math. 216 (2007), 279–301. MR2353257 Zbl 1124.3001510.1016/j.aim.2007.05.010Search in Google Scholar

[14] G. Gentili, D. C. Struppa, On the multiplicity of zeroes of polynomials with quaternionic coefficients. Milan J. Math. 76 (2008), 15–25. MR2465984 Zbl 1194.3005410.1007/s00032-008-0093-0Search in Google Scholar

[15] G. Gentili, D. C. Struppa, F. Vlacci, The fundamental theorem of algebra for Hamilton and Cayley numbers. Math. Z. 259 (2008), 895–902. MR2403747 Zbl 1144.3000410.1007/s00209-007-0254-9Search in Google Scholar

[16] R. Ghiloni, A. Perotti, Slice regular functions on real alternative algebras. Adv. Math. 226 (2011), 1662–1691. MR2737796 Zbl 1217.3004410.1016/j.aim.2010.08.015Search in Google Scholar

[17] R. Ghiloni, A. Perotti, Zeros of regular functions of quaternionic and octonionic variable: a division lemma and the camshaft effect. Ann. Mat. Pura Appl. (4) 190 (2011), 539–551. MR2825261 Zbl 1246.3001310.1007/s10231-010-0162-1Search in Google Scholar

[18] T. Y. Lam, A first course in noncommutative rings. Springer 1991. MR1125071 Zbl 0728.1600110.1007/978-1-4684-0406-7Search in Google Scholar

[19] M. Lothaire, Algebraic combinatorics on words, volume 90 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2002. MR1905123 Zbl 1001.6809310.1017/CBO9781107326019Search in Google Scholar

[20] I. Niven, Equations in quaternions. Amer. Math. Monthly48 (1941), 654–661. MR0006159 Zbl 0060.0800210.1080/00029890.1941.11991158Search in Google Scholar

[21] I. Niven, The roots of a quaternion. Amer. Math. Monthly49 (1942), 386–388. MR0006980 Zbl 0061.0140710.1080/00029890.1942.11991248Search in Google Scholar

[22] O. Ore, Theory of non-commutative polynomials. Ann. of Math. (2) 34 (1933), 480–508. MR1503119 Zbl 0007.15101 JFM 59.0925.0110.2307/1968173Search in Google Scholar

[23] A. Pogorui, M. Shapiro, On the structure of the set of zeros of quaternionic polynomials. Complex Var. Theory Appl. 49 (2004), 379–389. MR2073169 Zbl 1160.3035310.1080/0278107042000220276Search in Google Scholar

[24] J.-Y. Thibon, An introduction to noncommutative symmetric functions. In: Physics and theoretical computer science, volume 7 of NATO Secur. Sci. Ser. D Inf. Commun. Secur., 231–251, IOS, Amsterdam 2007. MR2504339Search in Google Scholar

[25] F. Vlacci, The argument principle for quaternionic slice regular functions. Michigan Math. J. 60 (2011), 67–77. MR2785864 Zbl 1230.3003710.1307/mmj/1301586304Search in Google Scholar

[26] F. Vlacci, The Gauss-Lucas theorem for regular quaternionic polynomials. In: Hypercomplex analysis and applications, 275–282, Springer 2011. MR3026147 Zbl 1221.3012110.1007/978-3-0346-0246-4_19Search in Google Scholar

Received: 2013-12-16
Revised: 2015-12-24
Published Online: 2017-6-9
Published in Print: 2017-10-26

© 2017 by Walter de Gruyter Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2017-0007/html
Scroll to top button