Abstract
Vieta’s classical formulae explicitly determine the coefficients of a polynomial p ∈ 𝔽[x] in terms of the roots of p, where 𝔽 is any commutative ring. In this paper, Vieta’s formulae are obtained for slice-regular polynomials over the noncommutative algebra of quaternions, by an argument which essentially relies on induction, without invoking quasideterminants or noncommutative symmetric functions.
Funding
The author was partially supported by Progetto MIUR di Rilevante Interesse Nazionale 2010–2011 “Varietà reali e complesse: geometria, topologia e analisi armonica” and by G.N.S.A.G.A of Istituto nazionale di Alta Matematica I.N.d.A.M. “F. Severi”
References
[1] A. Connes, A. Schwarz, Matrix Vieta theorem revisited. Lett. Math. Phys. 39 (1997), 349–353. MR1449580 Zbl 0874.1501010.1023/A:1007373114601Search in Google Scholar
[2] C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions. Duke Math. J. 32 (1965), 139–148. MR0173012 Zbl 0173.0900110.1215/S0012-7094-65-03212-6Search in Google Scholar
[3] M. K. Fung, On a Simple Derivation of the Noncommutative Vieta Theorem. Chinese J. of Physics44 (2006), 341–347.Search in Google Scholar
[4] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, Quasideterminants. Adv. Math. 193 (2005), 56–141. MR2132761 Zbl 1079.1500710.1016/j.aim.2004.03.018Search in Google Scholar
[5] I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, J.-Y. Thibon, Noncommutative symmetric functions. Adv. Math. 112 (1995), 218–348. MR1327096 Zbl 0831.0506310.1006/aima.1995.1032Search in Google Scholar
[6] I. Gelfand, V. S. Retakh, Determinants of matrices over noncommutative rings. Funktsional. Anal. i Prilozhen. 25 (1991), 13–25, 96. MR1142205 Zbl 0748.1500510.1007/BF01079588Search in Google Scholar
[7] I. Gelfand, V. S. Retakh, Theory of noncommutative determinants, and characteristic functions of graphs. Funktsional. Anal. i Prilozhen. 26 (1992), 1–20, 96. MR1209940 Zbl 0799.1500310.1007/BF01075044Search in Google Scholar
[8] I. Gelfand, V. Retakh, Noncommutative Vieta theorem and symmetric functions. In: The Gelfand Mathematical Seminars, 1993–1995, 93–100, Birkhäuser 1996. MR1398918 Zbl 0865.0507410.1007/978-1-4612-4122-5Search in Google Scholar
[9] I. Gelfand, V. Retakh, Quasideterminants. I. Selecta Math. (N.S.)3 (1997), 517–546. MR1613523 Zbl 0919.1601110.1007/s000290050019Search in Google Scholar
[10] G. Gentili, C. Stoppato, Zeros of regular functions and polynomials of a quaternionic variable. Michigan Math. J. 56 (2008), 655–667. MR2490652 Zbl 1184.3004810.1307/mmj/1231770366Search in Google Scholar
[11] G. Gentili, C. Stoppato, Power series and analyticity over the quaternions. Math. Ann. 352 (2012), 113–131. MR2885578 Zbl 1262.3005310.1007/s00208-010-0631-2Search in Google Scholar
[12] G. Gentili, D. C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable. C. R. Math. Acad. Sci. Paris342 (2006), 741–744. MR2227751 Zbl 1105.3003710.1016/j.crma.2006.03.015Search in Google Scholar
[13] G. Gentili, D. C. Struppa, A new theory of regular functions of a quaternionic variable. Adv. Math. 216 (2007), 279–301. MR2353257 Zbl 1124.3001510.1016/j.aim.2007.05.010Search in Google Scholar
[14] G. Gentili, D. C. Struppa, On the multiplicity of zeroes of polynomials with quaternionic coefficients. Milan J. Math. 76 (2008), 15–25. MR2465984 Zbl 1194.3005410.1007/s00032-008-0093-0Search in Google Scholar
[15] G. Gentili, D. C. Struppa, F. Vlacci, The fundamental theorem of algebra for Hamilton and Cayley numbers. Math. Z. 259 (2008), 895–902. MR2403747 Zbl 1144.3000410.1007/s00209-007-0254-9Search in Google Scholar
[16] R. Ghiloni, A. Perotti, Slice regular functions on real alternative algebras. Adv. Math. 226 (2011), 1662–1691. MR2737796 Zbl 1217.3004410.1016/j.aim.2010.08.015Search in Google Scholar
[17] R. Ghiloni, A. Perotti, Zeros of regular functions of quaternionic and octonionic variable: a division lemma and the camshaft effect. Ann. Mat. Pura Appl. (4) 190 (2011), 539–551. MR2825261 Zbl 1246.3001310.1007/s10231-010-0162-1Search in Google Scholar
[18] T. Y. Lam, A first course in noncommutative rings. Springer 1991. MR1125071 Zbl 0728.1600110.1007/978-1-4684-0406-7Search in Google Scholar
[19] M. Lothaire, Algebraic combinatorics on words, volume 90 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2002. MR1905123 Zbl 1001.6809310.1017/CBO9781107326019Search in Google Scholar
[20] I. Niven, Equations in quaternions. Amer. Math. Monthly48 (1941), 654–661. MR0006159 Zbl 0060.0800210.1080/00029890.1941.11991158Search in Google Scholar
[21] I. Niven, The roots of a quaternion. Amer. Math. Monthly49 (1942), 386–388. MR0006980 Zbl 0061.0140710.1080/00029890.1942.11991248Search in Google Scholar
[22] O. Ore, Theory of non-commutative polynomials. Ann. of Math. (2) 34 (1933), 480–508. MR1503119 Zbl 0007.15101 JFM 59.0925.0110.2307/1968173Search in Google Scholar
[23] A. Pogorui, M. Shapiro, On the structure of the set of zeros of quaternionic polynomials. Complex Var. Theory Appl. 49 (2004), 379–389. MR2073169 Zbl 1160.3035310.1080/0278107042000220276Search in Google Scholar
[24] J.-Y. Thibon, An introduction to noncommutative symmetric functions. In: Physics and theoretical computer science, volume 7 of NATO Secur. Sci. Ser. D Inf. Commun. Secur., 231–251, IOS, Amsterdam 2007. MR2504339Search in Google Scholar
[25] F. Vlacci, The argument principle for quaternionic slice regular functions. Michigan Math. J. 60 (2011), 67–77. MR2785864 Zbl 1230.3003710.1307/mmj/1301586304Search in Google Scholar
[26] F. Vlacci, The Gauss-Lucas theorem for regular quaternionic polynomials. In: Hypercomplex analysis and applications, 275–282, Springer 2011. MR3026147 Zbl 1221.3012110.1007/978-3-0346-0246-4_19Search in Google Scholar
© 2017 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Ricci solitons on four-dimensional Lorentzian Walker manifolds
- The exterior splash in PG(6, q): carrier conics
- Central figure-8 cross-cuts make surfaces cylindrical
- Vieta’s formulae for regular polynomials of a quaternionic variable
- On characterizations of sausages via inequalities and roots of Steiner polynomials
- On maximal symplectic partial spreads
- Helly numbers of algebraic subsets of ℝd and an extension of Doignon’s Theorem
- A maximum problem of S.-T. Yau for variational p-capacity
- Drapeable unit arcs fit in the unit 30° sector
- Uniform Lie algebras and uniformly colored graphs
- A Krasnosel’skii-type theorem for an enlarged class of orthogonal polytopes
Articles in the same Issue
- Frontmatter
- Ricci solitons on four-dimensional Lorentzian Walker manifolds
- The exterior splash in PG(6, q): carrier conics
- Central figure-8 cross-cuts make surfaces cylindrical
- Vieta’s formulae for regular polynomials of a quaternionic variable
- On characterizations of sausages via inequalities and roots of Steiner polynomials
- On maximal symplectic partial spreads
- Helly numbers of algebraic subsets of ℝd and an extension of Doignon’s Theorem
- A maximum problem of S.-T. Yau for variational p-capacity
- Drapeable unit arcs fit in the unit 30° sector
- Uniform Lie algebras and uniformly colored graphs
- A Krasnosel’skii-type theorem for an enlarged class of orthogonal polytopes