Abstract
We prove that there exist non-trivial (i.e. not Einstein) Ricci solitons on non-conformally flat four-dimensional Lorentzian Walker manifolds. Moreover, we show that only steady Ricci solitons may be gradient ones.
Funding
The second author was supported by the Ministry of Economy and Competitiveness, Spain, under Project MTM2011-22528.
References
[1] A. B. Ardakani, A. H. Zaeim, Homogeneous structures on special classes of space-times. Int. J. Nonlinear Sci. 14 (2012), 95–99. MR2982486 Zbl 1307.53055Search in Google Scholar
[2] P. Baird, L. Danielo, Three-dimensional Ricci solitons which project to surfaces. J. Reine Angew. Math. 608 (2007), 65–91. MR2339469 Zbl 1128.5302010.1515/CRELLE.2007.053Search in Google Scholar
[3] W. Batat, M. Brozos-Vázquez, E. García-Río, S. Gavino-Fernández, Ricci solitons on Lorentzian manifolds with large isometry groups. Bull. Lond. Math. Soc. 43 (2011), 1219–1227. MR2861543 Zbl 1266.5304910.1112/blms/bdr057Search in Google Scholar
[4] W. Batat, G. Calvaruso, B. De Leo, On the geometry of four-dimensional Walker manifolds. Rend. Mat. Appl. (7) 29 (2009), 163–173. MR2604481 Zbl 1198.53080Search in Google Scholar
[5] M. Brozos-Vázquez, G. Calvaruso, E. Garcí a-Río, S. Gavino-Fernández, Three-dimensional Lorentzian homogeneous Ricci solitons. Israel J. Math. 188 (2012), 385–403. MR2897737 Zbl 1264.5305210.1007/s11856-011-0124-3Search in Google Scholar
[6] M. Brozos-Vázquez, E. Garcí a-Río, S. Gavino-Fernández, Locally conformally flat Lorentzian gradient Ricci solitons. J. Geom. Anal. 23 (2013), 1196–1212. MR3078350 Zbl 1285.5305910.1007/s12220-011-9283-zSearch in Google Scholar
[7] G. Calvaruso, B. De Leo, Ricci solitons on Lorentzian Walker three-manifolds. Acta Math. Hungar. 132 (2011), 269–293. MR2818908 Zbl 1274.5310010.1007/s10474-010-0049-zSearch in Google Scholar
[8] G. Calvaruso, A. Fino, Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces. Canad. J. Math. 64 (2012), 778–804. MR2957230 Zbl 1252.5305610.4153/CJM-2011-091-1Search in Google Scholar
[9] G. Calvaruso, A. Fino, Four-dimensional pseudo-Riemannian homogeneous Ricci solitons. Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550056, 21. MR3349925 Zbl 0645466710.1142/S0219887815500565Search in Google Scholar
[10] M. Chaichi, E. García-Río, Y. Matsushita, Curvature properties of four-dimensional Walker metrics. Classical Quantum Gravity22 (2005), 559–577. MR2115361 Zbl 1086.8303110.1088/0264-9381/22/3/008Search in Google Scholar
[11] M. Chaichi, E. García-Río, M. E. Vázquez-Abal, Three-dimensional Lorentz manifolds admitting a parallel null vector field. J. Phys. A38 (2005), 841–850. MR2125237 Zbl 1068.5304910.1088/0305-4470/38/4/005Search in Google Scholar
[12] L. F. Di Cerbo, Generic properties of homogeneous Ricci solitons. Adv. Geom. 14 (2014), 225–237. MR3263424 Zbl 1295.5307110.1515/advgeom-2013-0031Search in Google Scholar
[13] J. Lauret, Ricci soliton solvmanifolds. J. Reine Angew. Math. 650 (2011), 1–21. MR2770554 Zbl 1210.5305110.1515/crelle.2011.001Search in Google Scholar
[14] K. Onda, Lorentz Ricci solitons on 3-dimensional Lie groups. Geom. Dedicata147 (2010), 313–322. MR2660582 Zbl 1203.5304410.1007/s10711-009-9456-0Search in Google Scholar
[15] T. L. Payne, The existence of soliton metrics for nilpotent Lie groups. Geom. Dedicata145 (2010), 71–88. MR2600946 Zbl 1189.5304810.1007/s10711-009-9404-zSearch in Google Scholar
[16] A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes. Quart. J. Math., Oxford Ser. (2) 1 (1950), 69–79. MR0035085 Zbl 0036.3830310.1093/qmath/1.1.69Search in Google Scholar
© 2017 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Ricci solitons on four-dimensional Lorentzian Walker manifolds
- The exterior splash in PG(6, q): carrier conics
- Central figure-8 cross-cuts make surfaces cylindrical
- Vieta’s formulae for regular polynomials of a quaternionic variable
- On characterizations of sausages via inequalities and roots of Steiner polynomials
- On maximal symplectic partial spreads
- Helly numbers of algebraic subsets of ℝd and an extension of Doignon’s Theorem
- A maximum problem of S.-T. Yau for variational p-capacity
- Drapeable unit arcs fit in the unit 30° sector
- Uniform Lie algebras and uniformly colored graphs
- A Krasnosel’skii-type theorem for an enlarged class of orthogonal polytopes
Articles in the same Issue
- Frontmatter
- Ricci solitons on four-dimensional Lorentzian Walker manifolds
- The exterior splash in PG(6, q): carrier conics
- Central figure-8 cross-cuts make surfaces cylindrical
- Vieta’s formulae for regular polynomials of a quaternionic variable
- On characterizations of sausages via inequalities and roots of Steiner polynomials
- On maximal symplectic partial spreads
- Helly numbers of algebraic subsets of ℝd and an extension of Doignon’s Theorem
- A maximum problem of S.-T. Yau for variational p-capacity
- Drapeable unit arcs fit in the unit 30° sector
- Uniform Lie algebras and uniformly colored graphs
- A Krasnosel’skii-type theorem for an enlarged class of orthogonal polytopes