Home Mathematics Ricci solitons on four-dimensional Lorentzian Walker manifolds
Article
Licensed
Unlicensed Requires Authentication

Ricci solitons on four-dimensional Lorentzian Walker manifolds

  • Noura Sidhoumi and Wafaa Batat EMAIL logo
Published/Copyright: June 9, 2017
Become an author with De Gruyter Brill

Abstract

We prove that there exist non-trivial (i.e. not Einstein) Ricci solitons on non-conformally flat four-dimensional Lorentzian Walker manifolds. Moreover, we show that only steady Ricci solitons may be gradient ones.

MSC 2010: 53C20; 53C21

Communicated by: G. Gentili


Funding

The second author was supported by the Ministry of Economy and Competitiveness, Spain, under Project MTM2011-22528.

References

[1] A. B. Ardakani, A. H. Zaeim, Homogeneous structures on special classes of space-times. Int. J. Nonlinear Sci. 14 (2012), 95–99. MR2982486 Zbl 1307.53055Search in Google Scholar

[2] P. Baird, L. Danielo, Three-dimensional Ricci solitons which project to surfaces. J. Reine Angew. Math. 608 (2007), 65–91. MR2339469 Zbl 1128.5302010.1515/CRELLE.2007.053Search in Google Scholar

[3] W. Batat, M. Brozos-Vázquez, E. García-Río, S. Gavino-Fernández, Ricci solitons on Lorentzian manifolds with large isometry groups. Bull. Lond. Math. Soc. 43 (2011), 1219–1227. MR2861543 Zbl 1266.5304910.1112/blms/bdr057Search in Google Scholar

[4] W. Batat, G. Calvaruso, B. De Leo, On the geometry of four-dimensional Walker manifolds. Rend. Mat. Appl. (7) 29 (2009), 163–173. MR2604481 Zbl 1198.53080Search in Google Scholar

[5] M. Brozos-Vázquez, G. Calvaruso, E. Garcí a-Río, S. Gavino-Fernández, Three-dimensional Lorentzian homogeneous Ricci solitons. Israel J. Math. 188 (2012), 385–403. MR2897737 Zbl 1264.5305210.1007/s11856-011-0124-3Search in Google Scholar

[6] M. Brozos-Vázquez, E. Garcí a-Río, S. Gavino-Fernández, Locally conformally flat Lorentzian gradient Ricci solitons. J. Geom. Anal. 23 (2013), 1196–1212. MR3078350 Zbl 1285.5305910.1007/s12220-011-9283-zSearch in Google Scholar

[7] G. Calvaruso, B. De Leo, Ricci solitons on Lorentzian Walker three-manifolds. Acta Math. Hungar. 132 (2011), 269–293. MR2818908 Zbl 1274.5310010.1007/s10474-010-0049-zSearch in Google Scholar

[8] G. Calvaruso, A. Fino, Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces. Canad. J. Math. 64 (2012), 778–804. MR2957230 Zbl 1252.5305610.4153/CJM-2011-091-1Search in Google Scholar

[9] G. Calvaruso, A. Fino, Four-dimensional pseudo-Riemannian homogeneous Ricci solitons. Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550056, 21. MR3349925 Zbl 0645466710.1142/S0219887815500565Search in Google Scholar

[10] M. Chaichi, E. García-Río, Y. Matsushita, Curvature properties of four-dimensional Walker metrics. Classical Quantum Gravity22 (2005), 559–577. MR2115361 Zbl 1086.8303110.1088/0264-9381/22/3/008Search in Google Scholar

[11] M. Chaichi, E. García-Río, M. E. Vázquez-Abal, Three-dimensional Lorentz manifolds admitting a parallel null vector field. J. Phys. A38 (2005), 841–850. MR2125237 Zbl 1068.5304910.1088/0305-4470/38/4/005Search in Google Scholar

[12] L. F. Di Cerbo, Generic properties of homogeneous Ricci solitons. Adv. Geom. 14 (2014), 225–237. MR3263424 Zbl 1295.5307110.1515/advgeom-2013-0031Search in Google Scholar

[13] J. Lauret, Ricci soliton solvmanifolds. J. Reine Angew. Math. 650 (2011), 1–21. MR2770554 Zbl 1210.5305110.1515/crelle.2011.001Search in Google Scholar

[14] K. Onda, Lorentz Ricci solitons on 3-dimensional Lie groups. Geom. Dedicata147 (2010), 313–322. MR2660582 Zbl 1203.5304410.1007/s10711-009-9456-0Search in Google Scholar

[15] T. L. Payne, The existence of soliton metrics for nilpotent Lie groups. Geom. Dedicata145 (2010), 71–88. MR2600946 Zbl 1189.5304810.1007/s10711-009-9404-zSearch in Google Scholar

[16] A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes. Quart. J. Math., Oxford Ser. (2) 1 (1950), 69–79. MR0035085 Zbl 0036.3830310.1093/qmath/1.1.69Search in Google Scholar

Received: 2014-11-7
Revised: 2015-10-13
Published Online: 2017-6-9
Published in Print: 2017-10-26

© 2017 by Walter de Gruyter Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2017-0020/html
Scroll to top button