Abstract
Let M be a complete connected C2-surface in ℝ3 in general position, intersecting some plane along a clean figure-8 (a loop with total curvature zero) and such that all compact intersections with planes have central symmetry. We prove that M is a (geometric) cylinder over some central figure-8. On the way, we establish interesting facts about centrally symmetric loops in the plane; for instance, a clean loop with even rotation number 2k can never be central unless it passes through its center exactly twice and k = 0.
References
[1] W. Blaschke, Über affine Geometrie XXII: Bestimmung der Flächen mit zentrischen ebenen Schnitten. Leipz. Ber. 70 (1919), 336–340. JFM 47.0661.01 (Also in: W. Blaschke, Gesammelte Werke. Band 4: Affine Differentialgeometrie: Differentialgeometrie der Kreis- und Kugelgruppen. Thales-Verlag, Essen, 1985)Search in Google Scholar
[2] W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. II. Springer 1923. JFM 49.0499.0110.1007/978-3-642-47392-0Search in Google Scholar
[3] G. R. Burton, Some characterisations of the ellipsoid. Israel J. Math. 28 (1977), 339–349. MR0513965 Zbl 0368.5200410.1007/BF02760640Search in Google Scholar
[4] M. Ghomi, B. Solomon, Skew loops and quadric surfaces. Comment. Math. Helv. 77 (2002), 767–782. MR1949113 Zbl 1029.5300210.1007/PL00012441Search in Google Scholar
[5] M. W. Hirsch, Differential topology. Springer 1976. MR0448362 Zbl 0356.5700110.1007/978-1-4684-9449-5Search in Google Scholar
[6] W. Klingenberg, A course in differential geometry. Springer 1978. MR0474045 Zbl 0366.5300110.1007/978-1-4612-9923-3Search in Google Scholar
[7] S. Olovjanischnikoff, Über eine kennzeichnende Eigenschaft des Ellipsoides. (Russian with German summary) Uchenye Zapiski Leningrad State Univ., Math. Ser. 83(12) (1941), 114–128. MR0017553 Zbl 0061.37709Search in Google Scholar
[8] B. Solomon, Central cross-sections make surfaces of revolution quadric. Amer. Math. Monthly116 (2009), 351–355. MR2503320 Zbl 1229.5300710.1080/00029890.2009.11920946Search in Google Scholar
[9] B. Solomon, Surfaces with central convex cross-sections. Comment. Math. Helv. 87 (2012), 243–270. MR2914849 Zbl 1255.5300710.4171/CMH/253Search in Google Scholar
[10] H. Whitney, On regular closed curves in the plane. Compositio Math. 4 (1937), 276–284. MR1556973 Zbl 0016.13804 JFM 63.0647.0110.1007/978-1-4612-2974-2_3Search in Google Scholar
© 2017 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Ricci solitons on four-dimensional Lorentzian Walker manifolds
- The exterior splash in PG(6, q): carrier conics
- Central figure-8 cross-cuts make surfaces cylindrical
- Vieta’s formulae for regular polynomials of a quaternionic variable
- On characterizations of sausages via inequalities and roots of Steiner polynomials
- On maximal symplectic partial spreads
- Helly numbers of algebraic subsets of ℝd and an extension of Doignon’s Theorem
- A maximum problem of S.-T. Yau for variational p-capacity
- Drapeable unit arcs fit in the unit 30° sector
- Uniform Lie algebras and uniformly colored graphs
- A Krasnosel’skii-type theorem for an enlarged class of orthogonal polytopes
Articles in the same Issue
- Frontmatter
- Ricci solitons on four-dimensional Lorentzian Walker manifolds
- The exterior splash in PG(6, q): carrier conics
- Central figure-8 cross-cuts make surfaces cylindrical
- Vieta’s formulae for regular polynomials of a quaternionic variable
- On characterizations of sausages via inequalities and roots of Steiner polynomials
- On maximal symplectic partial spreads
- Helly numbers of algebraic subsets of ℝd and an extension of Doignon’s Theorem
- A maximum problem of S.-T. Yau for variational p-capacity
- Drapeable unit arcs fit in the unit 30° sector
- Uniform Lie algebras and uniformly colored graphs
- A Krasnosel’skii-type theorem for an enlarged class of orthogonal polytopes