Home Mathematics Modified classical flat Minkowski planes
Article
Licensed
Unlicensed Requires Authentication

Modified classical flat Minkowski planes

  • Günter F. Steinke EMAIL logo
Published/Copyright: July 22, 2017
Become an author with De Gruyter Brill

Abstract

We construct anew family of flat Minkowski planes that admit the simple group PSL2(ℝ) as a group of automorphisms. These planes are obtained from the classical flat Minkowski plane by ‘bending’ circles at a distinguished circle.

MSC 2010: 51H15

R. Löwen


References

[1] R. Artzy, H. Groh, Laguerre and Minkowski planes produced by dilatations. J. Geom. 26 (1986), 1-20. MR837764 Zbl 0598.5100410.1007/BF01221003Search in Google Scholar

[2] D. Betten, Die Projektivitätengruppe der Moulton-Ebenen. J. Geom. 13 (1979), 197-209. MR560441 Zbl 0426.5100910.1007/BF01919755Search in Google Scholar

[3] E. Hartmann, Beispiele nicht einbettbarer reeller Minkowski-Ebenen. Geom. Dedicata10 (1981), 155-159. MR608137 Zbl 0454.5100410.1007/BF01447419Search in Google Scholar

[4] J. Jakóbowski, H.-J. Kroll, A. Matraś, Minkowski planes admitting automorphism groups of small type. J. Geom. 71 (2001), 78-84. MR1848314 Zbl 1003.5100410.1007/s00022-001-8554-4Search in Google Scholar

[5] M. Klein, A classification of Minkowski planes. PhD Thesis, University of Haifa, 1985.10.1007/BF01231025Search in Google Scholar

[6] M. Klein, Classification of Minkowski planes by transitive groups of homotheties. J. Geom. 43 (1992), 116-128. MR1148261 Zbl 0746.5100910.1007/BF01245947Search in Google Scholar

[7] M. Klein, H.-J. Kroll, A classification of Minkowski planes. J. Geom. 36 (1989), 99-109. MR1022339 Zbl 0694.5100510.1007/BF01231025Search in Google Scholar

[8] H.-J. Kroll, Eine Kennzeichnung der miquelschen Minkowski-Ebenen durch Transitivitätseigenschaften. Geom. Dedicata58 (1995), 75-77. MR1353301 Zbl 0838.5100210.1007/BF01263477Search in Google Scholar

[9] H.-J. Kroll, A. Matraś, Minkowski planes with Miquelian pairs. Beiträge Algebra Geom. 38 (1997), 99-109. MR1447989 Zbl 0885.51006Search in Google Scholar

[10] R. Löwen, Projectivities and the geometric structure of topological planes. In: Geometry— von Staudt’s point of view(Proc. NATO Adv. Study Inst., Bad Windsheim, 1980), volume 70 of NATO Adv. Study Inst. Ser., Ser. C:Math. Phys. Sci., 339-372, Reidel 1981. MR621322 Zbl 0458.5101510.1007/978-94-009-8489-9_13Search in Google Scholar

[11] R. Löwen, A local “fundamental theorem” for classical topological projective spaces. Arch. Math. (Basel) 38 (1982), 286-288. MR656196 Zbl 0486.5101410.1007/BF01304789Search in Google Scholar

[12] W. A. Pierce, Moulton planes. Canad. J. Math. 13 (1961), 427-436. MR0123960 Zbl 0103.1340410.4153/CJM-1961-035-6Search in Google Scholar

[13] W. A. Pierce, Collineations of affine Moulton planes. Canad. J. Math. 16 (1964), 46-62. MR0157264 Zbl 0135.3930310.4153/CJM-1964-005-9Search in Google Scholar

[14] W. A. Pierce, Collineations of projective Moulton planes. Canad. J. Math. 16 (1964), 637-656. MR0166677 Zbl 0136.1530210.4153/CJM-1964-064-4Search in Google Scholar

[15] B. Polster, The piecewise projective group as group of projectivities. Results Math. 30 (1996), 122-135. MR1402430 Zbl 0871.5100810.1007/BF03322185Search in Google Scholar

[16] B. Polster, Toroidal circle planes that are not Minkowski planes. J. Geom. 63 (1998), 154-167. MR1651572 Zbl 0928.5101110.1007/BF01221246Search in Google Scholar

[17] B. Polster, G. Steinke, Geometries on surfaces, volume 84 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2001. MR1889925 Zbl 0995.5100410.1017/CBO9780511549656Search in Google Scholar

[18] B. Polster, G. F. Steinke, Criteria for two-dimensional circle planes. Beiträge Algebra Geom. 35 (1994), 181-191. MR1312665 Zbl 0821.51013Search in Google Scholar

[19] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, M. Stroppel, Compact projective planes. De Gruyter 1995. MR1384300 Zbl 0851.5100310.1515/9783110876833Search in Google Scholar

[20] A. Schenkel, Topologische Minkowski-Ebenen. PhD thesis, Erlangen-Nürnberg, 1980.Search in Google Scholar

[21] G. Steinke, An extension property for classical topological Benz planes. Arch. Math. (Basel) 41 (1983), 190-192. MR719424 Zbl 0522.5100710.1007/BF01196877Search in Google Scholar

[22] G. F. Steinke, Some Minkowski planes with 3-dimensional automorphism group. J. Geom. 25 (1985), 88-100. MR815010 Zbl 0589.5102710.1007/BF01222947Search in Google Scholar

[23] G. F. Steinke, Topological affine planes composed of two Desarguesian half planes and projective planes with trivial collineation group. Arch. Math. (Basel) 44 (1985), 472-480. MR792373 Zbl 0564.5100610.1007/BF01229332Search in Google Scholar

[24] G. F. Steinke, A family of 2-dimensional Minkowski planes with small automorphism groups. Results Math. 26 (1994), 131-142. MR1290685 Zbl 0812.5100910.1007/BF03322292Search in Google Scholar

[25] G. F. Steinke, A family of flat Minkowski planes admitting 3-dimensional simple groups of automorphisms. Adv. Geom. 4 (2004), 319-340. MR2071809 Zbl 1067.5100810.1515/advg.2004.019Search in Google Scholar

[26] G. F. Steinke, On the Klein-Kroll types of flat Minkowski planes. J. Geom. 87 (2007), 160-178. MR2372525 Zbl 1155.5100910.1007/s00022-007-1913-zSearch in Google Scholar

[27] G. F. Steinke, Anote on Minkowski planes admitting groups of automorphisms of some large types with respect to homotheties. J. Geom. 103 (2012), 531-540. MR3017061 Zbl 1278.5100410.1007/s00022-013-0143-9Search in Google Scholar

Received: 2015-9-18
Published Online: 2017-7-22
Published in Print: 2017-7-26

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2017-0026/pdf
Scroll to top button