Home Mathematics Successive radii and ball operators in generalized Minkowski spaces
Article
Licensed
Unlicensed Requires Authentication

Successive radii and ball operators in generalized Minkowski spaces

  • Thomas Jahn EMAIL logo
Published/Copyright: July 22, 2017
Become an author with De Gruyter Brill

Abstract

We introduce successive radii in generalized Minkowski spaces (that is, with respect to gauges) and study some first properties. This is done via formulating some kind of minimal containment problems, where intersections or Minkowski sums of the latter set and affine flats of a certain dimension are incorporated. Since this is strongly related to minimax location problems, we also look at ball intersections and ball hulls.

MSC 2010: 52A21; 52A27; 52A40

Communicated by: M. Henk


References

[1] U. Betke, M. Henk, Estimating sizes of a convex body by successive diameters and widths. Mathematika39 (1992), 247–257. MR1203281 Zbl 0759.5200610.1112/S0025579300014984Search in Google Scholar

[2] U. Betke, M. Henk, A generalization of Steinhagen’s theorem. Abh. Math. Sem. Univ. Hamburg63 (1993), 165–176. MR1227872 Zbl 0789.5200510.1007/BF02941340Search in Google Scholar

[3] T. Bonnesen, W. Fenchel, Theory of convex bodies. BCS Associates, Moscow, ID 1987. MR920366 Zbl 0628.52001Search in Google Scholar

[4] R. Brandenberg, S. König, No dimension-independent core-sets for containment under homothetics. Discrete Comput. Geom. 49 (2013), 3–21. MR3010215 Zbl 1258.6816810.1145/1998196.1998272Search in Google Scholar

[5] R. Brandenberg, S. König, Sharpening geometric inequalities using computable symmetry measures. Mathematika61 (2015), 559–580. MR3415642 Zbl 1352.5200910.1112/S0025579314000291Search in Google Scholar

[6] B. González, M. A. Hernández Cifre, Successive radii and Minkowski addition. Monatsh. Math. 166 (2012), 395–409. MR2925146 Zbl 1247.5200410.1007/s00605-010-0268-ySearch in Google Scholar

[7] B. González, M. A. Hernández Cifre, A. Hinrichs, Successive radii of families of convex bodies. Bull. Aust. Math. Soc. 91 (2015), 331–344. MR3314152 Zbl 1320.5200610.1017/S0004972714000902Search in Google Scholar

[8] B. González Merino, On the ratio between successive radii of a symmetric convex body. Math. Inequal. Appl. 16 (2013), 569–576. MR3059991 Zbl 1270.5200410.7153/mia-16-42Search in Google Scholar

[9] P. Gritzmann, V. Klee, Inner and outer j-radii of convex bodies in finite-dimensional normed spaces. Discrete Comput. Geom. 7 (1992), 255–280. MR1149655 Zbl 0747.5200310.1007/BF02187841Search in Google Scholar

[10] P. Gritzmann, V. Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces. Math. Programming59 (1993), 163–213. MR1227482 Zbl 0784.9007610.1007/BF01581243Search in Google Scholar

[11] M. Henk, A generalization of Jung’s theorem. Geom. Dedicata42 (1992), 235–240. MR1163716 Zbl 0759.5200810.1007/BF00147552Search in Google Scholar

[12] M. Henk, M. A. Hernández Cifre, Intrinsic volumes and successive radii. J. Math. Anal. Appl. 343 (2008), 733–742. MR2401529 Zbl 1149.5200810.1016/j.jmaa.2008.01.091Search in Google Scholar

[13] M. Henk, M. A. Hernández Cifre, Successive minima and radii. Canad. Math. Bull. 52 (2009), 380–387. MR2547804 Zbl 1179.5200710.4153/CMB-2009-041-2Search in Google Scholar

[14] T. Jahn, Extremal radii, diameter, and minimum width in generalized Minkowski spaces. Rocky Mountain J. Math., to appear.10.1216/RMJ-2017-47-3-825Search in Google Scholar

[15] P. Martín, H. Martini, M. Spirova, Chebyshev sets and ball operators. J. Convex Anal. 21 (2014), 601–618. MR3243809 Zbl 1303.41014Search in Google Scholar

[16] H. Martini, C. Richter, M. Spirova, Intersections of balls and sets of constant width in finite-dimensional normed spaces. Mathematika59 (2013), 477–492. MR3081782 Zbl 1278.5200210.1112/S0025579313000041Search in Google Scholar

[17] H. Minkowski, Sur les propriétés des nombres entiers qui sont dérivées de l’intuition de l’espace. Nouv. Ann. (3) 15 (1896), 393–403. JFM 27.0133.01Search in Google Scholar

[18] J. P. Moreno, R. Schneider, Diametrically complete sets in Minkowski spaces. Israel J. Math. 191 (2012), 701–720. MR3011492 Zbl 1278.5200310.1007/s11856-012-0003-6Search in Google Scholar

[19] J. P. Moreno, R. Schneider, Structure of the space of diametrically complete sets in a Minkowski space. Discrete Comput. Geom. 48 (2012), 467–486. MR2946457 Zbl 1259.5200310.1007/s00454-011-9393-1Search in Google Scholar

[20] G. Ya. Perel’man, On the k-radii of a convex body. Sibirsk. Mat. Zh. 28 (1987), 185–186. MR906047 Zbl 0623.5200710.1007/BF00973857Search in Google Scholar

[21] S. V. Pukhov, Inequalities for the Kolmogorov and Bernšteĭn widths in Hilbert space. Mat. Zametki25 (1979), 619–628, 637. English translation: Math. Notes25 (1979), 320–326. MR534304 Zbl 0414.46016 Zbl 0424.46017Search in Google Scholar

[22] R. Schneider, Convex bodies: the Brunn–Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 2014. MR3155183 Zbl 1287.52001Search in Google Scholar

[23] M. Spirova, Discrete Geometry in Normed Spaces. Habilitation thesis, TU Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-62896Search in Google Scholar

[24] V. M. Tikhomirov, Diameters of sets in functional spaces and the theory of best approximations. Russian Math. Surveys15 (1960), 75–111. MR0117489 Zbl 0097.0910310.1070/RM1960v015n03ABEH004093Search in Google Scholar

[25] K. Zindler, Über konvexe Gebilde. Monatsh. Math. Phys. 30 (1920), 87–102. MR1549047 JFM 47.0681.0610.1007/BF01699908Search in Google Scholar

Received: 2015-4-13
Revised: 2015-7-27
Revised: 2015-9-25
Published Online: 2017-7-22
Published in Print: 2017-7-26

© 2017 by Walter de Gruyter Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2017-0012/html
Scroll to top button