Home The Archimedean projection property
Article
Licensed
Unlicensed Requires Authentication

The Archimedean projection property

  • Vincent Coll EMAIL logo , Jeff Dodd and Michael Harrison
Published/Copyright: July 22, 2017
Become an author with De Gruyter Brill

Abstract

Let H be a hypersurface in ℝn and let π be an orthogonal projection in ℝn restricted to H. We say that H satisfies the Archimedean projection property corresponding to π if there exists a constant C such that Vol(π–1(U)) = C·Vol(U) for every measurable U in the range of π. It iswell-known that the (n–1)-dimensional sphere, as a hypersurface in ℝn, satisfies the Archimedean projection property corresponding to any codimension 2 orthogonal projection in ℝn, the range of any such projection being an (n – 2)-dimensional ball. Here we construct new hypersurfaces that satisfy Archimedean projection properties. Our construction works for any projection codimension k with 2 ≤ kn – 1, and it allows us to specify a wide variety of desired projection ranges Ωnk ⊂ ℝnk. Letting Ωnk be the (nk)-dimensional ball for each k, it produces a new family of smooth, compact hypersurfaces in ℝn satisfying codimension k Archimedean projection properties that includes, in the special case k = 2, the (n – 1)-dimensional spheres.

MSC 2010: 53A07; 52A38; 52A20

S. H. Weintraub


Acknowledgements

We thank Jerry King for bringing Bernstein’s theory to our attention, David L. Johnson, Joe Yukich, and Rob Neel for reading and commenting on various drafts of this paper, and an anonymous referee for helpful suggestions that substantially improved the final product.

References

[1] S. Bernstein, Sur la définition et les propriétés des fonctions analytiques d’une variable réelle. Math. Ann. 75 (1914), 449–468. MR1511806 JFM 45.0635.0310.1007/BF01563654Search in Google Scholar

[2] K. Bezdek, R. Connelly, Pushing disks apart—the Kneser-Poulsen conjecture in the plane. J. Reine Angew. Math. 553 (2002), 221–236. MR1944813 Zbl 1021.5201210.1515/crll.2002.101Search in Google Scholar

[3] W. Blaschke, Vorlesungen über Differentialgeometrie I. Springer 1921.10.1007/978-3-642-49666-0_7Search in Google Scholar

[4] L. A. Caffarelli, M. G. Crandall, Distance functions and almost global solutions of eikonal equations. Comm. Partial Differential Equations 35 (2010), 391–414. MR2748630 Zbl 1187.3502410.1080/03605300903253927Search in Google Scholar

[5] V. Coll, J. Dodd, M. Harrison, On the smoothness of the equizonal ovaloids. J. Geom. 103 (2012), 409–416. MR3017052 Zbl 1283.5300410.1007/s00022-012-0135-1Search in Google Scholar

[6] V. Coll, M. Harrison, Hypersurfaces of revolution with proportional principal curvatures. Adv. Geom. 13 (2013), 485–496. MR3100922 Zbl 1272.5300310.1515/advgeom-2012-0035Search in Google Scholar

[7] V. Coll, M. Harrison, Gabriel’s Horn: a revolutionary tale. Math. Mag. 87 (2014), 263–275. MR3275788 Zbl 1325.5301110.4169/math.mag.87.4.263Search in Google Scholar

[8] J. Dodd, V. Coll, Generalizing the equal area zones property of the sphere. J. Geom. 90 (2008), 47–55. MR2465785 Zbl 1166.5330010.1007/s00022-008-2015-2Search in Google Scholar

[9] W.-Y. Hsiang, Z. H. Teng, W. C. Yu, New examples of constant mean curvature immersions of (2k – 1)-spheres into Euclidean 2k-space. Ann. of Math. (2) 117 (1983), 609–625. MR701257 Zbl 0522.5305210.2307/2007036Search in Google Scholar

[10] D. Hug, Nakajima’s problem for general convex bodies. Proc. Amer. Math. Soc. 137 (2009), 255–263. MR2439448 Zbl 1161.5200310.1090/S0002-9939-08-09432-XSearch in Google Scholar

[11] D.-S. Kim, Y. H. Kim, Some characterizations of spheres and elliptic paraboloids. Linear Algebra Appl. 437 (2012), 113–120. MR2917435 Zbl 1248.5300610.1016/j.laa.2012.02.013Search in Google Scholar

[12] S. G. Krantz, H. R. Parks, Distance to Ck hypersurfaces. J. Differential Equations 40 (1981), 116–120. MR614221 Zbl 0431.5700910.1016/0022-0396(81)90013-9Search in Google Scholar

[13] Y. Li, L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Comm. Pure Appl. Math. 58 (2005), 85–146. MR2094267 Zbl 1062.4902110.1002/cpa.20051Search in Google Scholar

[14] M. Pinl, W. Ziller, Minimal hypersurfaces in spaces of constant curvature. J. Differential Geometry 11 (1976), 335–343. MR0431050 Zbl 0344.5300510.4310/jdg/1214433591Search in Google Scholar

[15] W. Rudin, A generalization of a theorem of Archimedes. Amer. Math. Monthly80 (1973), 794–796. MR0328758 Zbl 0278.5000310.1080/00029890.1973.11993373Search in Google Scholar

[16] O. Stamm, Umkehrung eines Satzes von Archimedes über die Kugel. Abh. Math. Sem. Univ. Hamburg 17 (1951), 112–132. MR0041467 Zbl 0042.4070310.1007/BF02950746Search in Google Scholar

[17] D. V. Widder, The Laplace Transform. Princeton Univ. Press 1941. MR0005923 Zbl 0063.08245Search in Google Scholar

Received: 2015-6-15
Revised: 2015-11-11
Published Online: 2017-7-22
Published in Print: 2017-7-26

© 2017 by Walter de Gruyter Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2017-0013/html
Scroll to top button