Abstract
It is known that manifolds with G2 structures have almost contact metric structures; see [3; 16]. In this manuscript, we deform a parallel G2 structure by a parallel vector field and investigate the properties of the almost contact metric structure obtained by the deformation of the G2 structure.
References
[1] P. Alegre, A. Carriazo, Generalized Sasakian space forms and conformal changes of the metric.Results Math. 59 (2011), 485-493. MR2793469 Zbl 1219.5304810.1007/s00025-011-0115-zSearch in Google Scholar
[2] V. A. Alexiev, G. T. Ganchev, On the classification of the almost contact metric manifolds. In: Mathematics and mathematical education (Bulgarian), 155-161, Publ. House Bulgar. Acad. Sci., Sofia 1986. MR872914 Zbl 0601.53030Search in Google Scholar
[3] M. F. Arikan, H. Cho, S. Salur, Existence of compatible contact structures on G2-manifolds.Asian J. Math.17 (2013), 321-333. MR3078933 Zbl 1337.5306410.4310/AJM.2013.v17.n2.a3Search in Google Scholar
[4] D. E. Blair, Riemannian geometry of contact and symplectic manifolds. Birkhäuser 2002. MR1874240 Zbl 1011.5300110.1007/978-1-4757-3604-5Search in Google Scholar
[5] D. E. Blair, S. I. Goldberg, Topology of almost contact manifolds. J. Differential Geometry1 (1967), 347-354. MR0226539 Zbl 0163.4390210.4310/jdg/1214428098Search in Google Scholar
[6] R. L. Bryant, Metrics with exceptional holonomy. Ann. of Math. (2) 126 (1987), 525-576. MR916718 Zbl 0637.5304210.2307/1971360Search in Google Scholar
[7] R. L. Bryant, S. M. Salamon, On the construction of some complete metrics with exceptional holonomy.Duke Math. J. 58 (1989), 829-850. MR1016448 Zbl 0681.5302110.1215/S0012-7094-89-05839-0Search in Google Scholar
[8] D. Chinea, C. Gonzalez, A classification of almost contact metric manifolds.Ann. Mat. Pura Appl. (4) 156 (1990), 15-36. MR1080209 Zbl 0711.5302810.1007/BF01766972Search in Google Scholar
[9] D. Chinea, J. C. Marrero, Conformal changes of almost contact metric structures.Riv. Mat. Univ. Parma (5) 1 (1992), 19-31 (1993). MR1230594 Zbl 0795.53034Search in Google Scholar
[10] M. Fernandez, A. Gray, Riemannian manifolds with structure group G2.Ann. Mat. Pura Appl. (4) 132 (1982), 19-45 (1983). MR696037 Zbl 0524.5302310.1007/BF01760975Search in Google Scholar
[11] D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. I. J. Differential Geom. 43 (1996), 291-328. MR1424428 Zbl 0861.53022Search in Google Scholar
[12] D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. II. J. Differential Geom. 43 (1996), 329-375. MR1424428 Zbl 0861.5302210.4310/jdg/1214458110Search in Google Scholar
[13] D. D. Joyce, Compact manifolds with special holonomy. Oxford Univ. Press 2000. MR1787733 Zbl 1027.5305210.1093/oso/9780198506010.001.0001Search in Google Scholar
[14] S. Karigiannis, Deformations of G2 and Spin(7) structures. Canad. J. Math. 57 (2005), 1012-1055.MR2164593 Zbl 1091.5302610.4153/CJM-2005-039-xSearch in Google Scholar
[15] J. C. Marrero, The local structure of trans-Sasakian manifolds.Ann. Mat. Pura Appl. (4) 162 (1992), 77-86. MR1199647 Zbl 0772.5303610.1007/BF01760000Search in Google Scholar
[16] P. Matzeu, M.-I. Munteanu, Vector cross products and almost contact structures.Rend. Mat. Appl. (7) 22 (2002), 359-376 (2003). MR2041239 Zbl 1051.53023Search in Google Scholar
[17] N. Özdemir, Ş. Aktay, Dirac operator on a 7-manifold with deformed G2 structure.An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 20 (2012), 83-93. MR3020328 Zbl 1289.5309510.2478/v10309-012-0057-9Search in Google Scholar
[18] N. Özdemir, Ş . Aktay, On deformations of G2-structures by Killing vector fields.Adv. Geom. 14 (2014), 683-690. MR3276128 Zbl 1302.5305010.1515/advgeom-2014-0012Search in Google Scholar
[19] S. Tanno, The topology of contact Riemannian manifolds. Illinois J. Math. 12 (1968), 700-717. MR0234486 Zbl 0165.2470310.1215/ijm/1256053971Search in Google Scholar
[20] I. Vaisman, Conformal changes of almost contact metric structures. In: Geometry and differential geometry (Proc. Conf., Univ. Haifa, 1979), volume 792 of Lecture Notes in Math., 435-443, Springer 1980. MR585886 Zbl 0431.5303010.1007/BFb0088694Search in Google Scholar
© 2017 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Classification of 3-dimensional left-invariant almost paracontact metric structures
- On the topology of the spaces of curvature constrained plane curves
- On deformations of parallel G2 structures and almost contact metric structures
- A flag representation of projection functions
- A fundamental theorem for submanifolds of multiproducts of real space forms
- Intriguing sets of quadrics in PG(5, q)
- Successive radii and ball operators in generalized Minkowski spaces
- Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms
- The Archimedean projection property
- Kernels of numerical pushforwards
- Modified classical flat Minkowski planes
Articles in the same Issue
- Frontmatter
- Classification of 3-dimensional left-invariant almost paracontact metric structures
- On the topology of the spaces of curvature constrained plane curves
- On deformations of parallel G2 structures and almost contact metric structures
- A flag representation of projection functions
- A fundamental theorem for submanifolds of multiproducts of real space forms
- Intriguing sets of quadrics in PG(5, q)
- Successive radii and ball operators in generalized Minkowski spaces
- Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms
- The Archimedean projection property
- Kernels of numerical pushforwards
- Modified classical flat Minkowski planes