Home Technology Establishment of analysis methodology of RADTRAD for Maanshan PWR ATWS
Article
Licensed
Unlicensed Requires Authentication

Establishment of analysis methodology of RADTRAD for Maanshan PWR ATWS

  • H.-T. Lin EMAIL logo
Published/Copyright: March 2, 2021
Become an author with De Gruyter Brill

Abstract

In this research, the analysis methodology for Maanshan PWR nuclear power plant (NPP) ATWS (Anticipated Transient Without Scram) is established by using RADTRAD code. This methodology can evaluate the dose at Exclusion Area Boundary (EAB), Low Population Zone (LPZ), and control room for the Maanshan ATWS. In addition, there are four leakage pathways in the Maanshan ATWS that are containment leakage, containment low volume purge, steam generator leakage, and ESF leakage. Therefore, for these leakage pathways, the RADTRAD models are established. Finally, according to the analysis results, they are below the criteria of 10 CFR 100.11 for the EAB and LPZ and Standard Review Plan (SRP) for the control room. Additionally, the steam generator leakage gives the maximum dose in these leakage pathways.

Kurzfassung

In diesem Beitrag wird die Anwendung des Programms RADT-RAD für Ausbreitungsrechnungen für den Druckwasserreaktor Maanshan beim Ereignis ATWS beschrieben. Mit diesem Programm können Dosisberechnungen für verschiedene Räume und Zonen bestimmt werden, hier werden die Dosen für Exclusion Area Boundary (EAB), für Low Population Zone (LPZ) und den Kontrollraum ausgewertet. Darüber hinaus gibt es vier Leckagepfade im Maanshan ATWS, nämlich Containmentleckage, Containment Low Volume Purge, Dampferzeugerleckage und ESF-Leckage. Daher werden für diese Leckagepfade die RADTRAD-Modelle erstellt. Gemäß den Analyseergebnissen liegen sie schließlich unter den Kriterien von 10 CFR 100.11 für die EAB und LPZ und dem Standard Review Plan (SRP) für den Kontrollraum. Außerdem folgt aus den Rechnungen, dass die Dampferzeugerleckage zur maximale Dosis in diesen Leckagepfaden führt.

Abbreviations

ATWS

Anticipated Transient Without Scram

BR

Breathing Rate

DCF

Dose Conversion Factor

EAB

Exclusion Area Boundary

LPZ

Low Population Zone

MURPU

Measurement Uncertainty Recapture Power Uprate

NPP

Nuclear Power Plant

PRT

Pressurizer Relief Tank

RCP

Reactor Coolant Pump

RCS

Reactor Coolant System

SNL

Sandia National Laboratories

SRP

Standard Review Plan

References

1 U.S. NRC: RADTRAD: a simplified model for radionuclide transport and removal and dose estimation, NUREG/CR-6604, 1997Search in Google Scholar

2 Westinghouse Electric Corporation: Westinghouse Anticipated Transients Without Trip Analysis, WCAP-8330, 1974Search in Google Scholar

3 Taiwan Power Company: Maanshan Nuclear Power Station Final Safety Analysis Report (FSAR), 2013Search in Google Scholar

4 Taiwan Power Company: Maanshan Nuclear Power Station Training materials, 2006Search in Google Scholar

5 Westinghouse Electric Corporation: Anticipated Transients Without Scram for Westinghouse Plants, 1979Search in Google Scholar

6 U.S. NRC: 10 CFR 100.11, 1997Search in Google Scholar

7 U.S. NRC: Standard Review Plan, NUREG-0800, Revision 3, 2007Search in Google Scholar

8 Wang, C. D.;Wang, C. Y.; Dai, L. C.; Lin, H. T.; Hsu, S. S.; Chan, Y. K.; Yuann, Y. R.: The ATWS Event Integral Analysis Methodology for Maanshan Nuclear Power Plant, 2019Search in Google Scholar

9 U.S. NRC: Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Light-Water Nuclear Power Reactors, Regulatory Guide 1.195, 2003Search in Google Scholar

10 Eckerman, K. F.;Wolbarst, A. B.; Richardson, A. C. B.: Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion, Federal Guidance Report No. 11, Sept. 1988, DOI:10.2172/629423310.2172/6294233Search in Google Scholar

11 Eckerman, K. F.; Ryman, J. C.: External Exposure to Radionuclides in Air, Water, and Soil, Federal Guidance Report No. 12, Sept. 1993.Search in Google Scholar

12 Wang, C. D.: Radiological Dose Analysis Methodology for Maanshan PWR Plant during Loss of Coolant Accident, INER-K0075R, 2018Search in Google Scholar

Received: 2020-08-17
Published Online: 2021-03-02

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/KERN-2020-0057/pdf
Scroll to top button