Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
On Completeness of Random Transition Count for Markov Chains
-
A. Palma
Veröffentlicht/Copyright:
9. Juni 2010
Abstract
It is shown that the random transition count is complete for Markov chains with a fixed length and a fixed initial state, for some subsets of the set of all transition probabilities.
Key words and phrases.: Markov chain; random transition count; sufficient statistic; minimal sufficient statistic; complete statistic
Received: 2004-12-07
Revised: 2005-11-24
Published Online: 2010-06-09
Published in Print: 2006-December
© Heldermann Verlag
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- and Ultrafilters on ℚ and ω
- Remarks on Best Approximations in Generalized Convex Spaces
- A Note on P-Times and Time Projections
- The Apollonian Metric: The Comparison Property, Bilipschitz Mappings and Thick Sets
- On the Integral Quasicontinuity
- On Completeness of Random Transition Count for Markov Chains
- Notes on Uniqueness of Meromorphic Functions
- Strong and Weak Convergence of Implicit Iterative Process with Errors for Asymptotically Nonexpansive Mappings
- On Measurable Sierpiński-Zygmund Functions
- Extension Theorem for a Functional Equation
Schlagwörter für diesen Artikel
Markov chain;
random transition count;
sufficient statistic;
minimal sufficient statistic;
complete statistic
Artikel in diesem Heft
- and Ultrafilters on ℚ and ω
- Remarks on Best Approximations in Generalized Convex Spaces
- A Note on P-Times and Time Projections
- The Apollonian Metric: The Comparison Property, Bilipschitz Mappings and Thick Sets
- On the Integral Quasicontinuity
- On Completeness of Random Transition Count for Markov Chains
- Notes on Uniqueness of Meromorphic Functions
- Strong and Weak Convergence of Implicit Iterative Process with Errors for Asymptotically Nonexpansive Mappings
- On Measurable Sierpiński-Zygmund Functions
- Extension Theorem for a Functional Equation