Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Remarks on Best Approximations in Generalized Convex Spaces
-
Z. D. Mitrović
Veröffentlicht/Copyright:
9. Juni 2010
Abstract
In this paper, we prove a best approximation theorem in generalized convex spaces. As an application, we derive a result on the existence of a maximal element and a coincidence point theorem in generalized convex spaces. The results of this paper generalize some known results in the literature.
Received: 2005-03-10
Revised: 2005-08-01
Published Online: 2010-06-09
Published in Print: 2006-December
© Heldermann Verlag
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- and Ultrafilters on ℚ and ω
- Remarks on Best Approximations in Generalized Convex Spaces
- A Note on P-Times and Time Projections
- The Apollonian Metric: The Comparison Property, Bilipschitz Mappings and Thick Sets
- On the Integral Quasicontinuity
- On Completeness of Random Transition Count for Markov Chains
- Notes on Uniqueness of Meromorphic Functions
- Strong and Weak Convergence of Implicit Iterative Process with Errors for Asymptotically Nonexpansive Mappings
- On Measurable Sierpiński-Zygmund Functions
- Extension Theorem for a Functional Equation
Artikel in diesem Heft
- and Ultrafilters on ℚ and ω
- Remarks on Best Approximations in Generalized Convex Spaces
- A Note on P-Times and Time Projections
- The Apollonian Metric: The Comparison Property, Bilipschitz Mappings and Thick Sets
- On the Integral Quasicontinuity
- On Completeness of Random Transition Count for Markov Chains
- Notes on Uniqueness of Meromorphic Functions
- Strong and Weak Convergence of Implicit Iterative Process with Errors for Asymptotically Nonexpansive Mappings
- On Measurable Sierpiński-Zygmund Functions
- Extension Theorem for a Functional Equation