Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
On the Integral Quasicontinuity
-
Z. Grande
und E. Strońska
Veröffentlicht/Copyright:
9. Juni 2010
Abstract
A function
satisfies the condition QI(x) (resp.
,
) at a point
if for each real ε > 0 and for each set U ∋ x belonging to Euclidean topology in
(resp. to the strong density topology [to the ordinary density topology]) there is an open set O such that O ∩ U ≠ ∅ and

These notions are some analogies of the quasicontinuity or the approximate quasicontinuity. In this article we compare these notions with the classical notion of the quasicontinuity.
Received: 2004-10-12
Revised: 2005-10-04
Published Online: 2010-06-09
Published in Print: 2006-December
© Heldermann Verlag
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- and Ultrafilters on ℚ and ω
- Remarks on Best Approximations in Generalized Convex Spaces
- A Note on P-Times and Time Projections
- The Apollonian Metric: The Comparison Property, Bilipschitz Mappings and Thick Sets
- On the Integral Quasicontinuity
- On Completeness of Random Transition Count for Markov Chains
- Notes on Uniqueness of Meromorphic Functions
- Strong and Weak Convergence of Implicit Iterative Process with Errors for Asymptotically Nonexpansive Mappings
- On Measurable Sierpiński-Zygmund Functions
- Extension Theorem for a Functional Equation
Schlagwörter für diesen Artikel
Density topology;
quasicontinuity;
measurability;
integral
Artikel in diesem Heft
- and Ultrafilters on ℚ and ω
- Remarks on Best Approximations in Generalized Convex Spaces
- A Note on P-Times and Time Projections
- The Apollonian Metric: The Comparison Property, Bilipschitz Mappings and Thick Sets
- On the Integral Quasicontinuity
- On Completeness of Random Transition Count for Markov Chains
- Notes on Uniqueness of Meromorphic Functions
- Strong and Weak Convergence of Implicit Iterative Process with Errors for Asymptotically Nonexpansive Mappings
- On Measurable Sierpiński-Zygmund Functions
- Extension Theorem for a Functional Equation