Home Physical Sciences Gold as an X-ray CT scanning contrast agent: Effect on the mechanical properties of wood plastic composites
Article
Licensed
Unlicensed Requires Authentication

Gold as an X-ray CT scanning contrast agent: Effect on the mechanical properties of wood plastic composites

  • Yi Wang , Lech Muszynski and John Simonsen
Published/Copyright: November 1, 2007
Holzforschung
From the journal Volume 61 Issue 6

Abstract

Wood plastic composites (WPCs) are typically composed of wood particles, thermoplastic polymers and small amounts of additives. Further improvement of WPC technology requires a better understanding of their mechanical performance and durability on the micro level. X-ray computed tomography (CT) and advanced imaging techniques can provide visualization and support characterization of the internal structure, deformation and damage accumulation in WPCs under loading and various environmental exposures. However, both wood and thermoplastics are weakly attenuating materials for X-ray and good contrast between these two components is difficult to obtain. In the present study, chemically inert gold nano-particles and micro-particles were investigated as contrast agents to improve X-ray CT scanning contrast between wood and thermoplastics. The effect of adding 1% (by wt.) gold nano- and micro-particles on the tensile properties of wood/high-density polyethylene composites was addressed. Samples with and without surfactant were tested in tension and scanned on a custom desktop X-ray CT system. It was found that the addition of gold particles did not impair the WPC tensile properties. However, some of the tensile properties were significantly affected if the surfactant was included. Gold micro-particles were shown to disperse well without surfactant and significantly improve the X-ray CT scanning contrast between wood and polymer, while gold nano-particles (without surfactant) did not disperse well and do not contribute to contrast improvement.


Corresponding author. Department of Wood Science and Engineering, 119 Richardson Hall, Oregon State University, Corvallis, OR 97331-5751, USA

Received: 2007-2-13
Accepted: 2007-7-16
Published Online: 2007-11-01
Published in Print: 2007-11-01

©2007 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Acknowledgement
  2. Subject index
  3. Contents Volume 61 (2007)
  4. Author index
  5. Species index (scientific names)
  6. Meetings
  7. Improvement of Pinus pinaster Ait elite trees selection by combining near infrared spectroscopy and genetic tools
  8. Direct method for the determination of phenolic hydroxyl groups in pulp
  9. Comparative effect of ozone, chlorine dioxide, and hydrogen peroxide on lignin: Reactions affecting pulp colour in the final bleaching stage
  10. Structural modification of eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase-mediator stage
  11. Analysis of wood tissues by time-of-flight secondary ion mass spectrometry
  12. Isolation and identification of residual chromophores from aged bleached pulp samples
  13. Studies on oxidative modifications of cellulose in the periodate system: Molecular weight distribution and carbonyl group profiles
  14. Lignin-carbohydrate network in wood and pulps: A determinant for reactivity
  15. Cross polarisation/magic angle spinning 13C-NMR spectroscopic studies of cellulose structural changes in hardwood dissolving pulp process
  16. Fungal decay of spruce and beech wood assessed by near-infrared spectroscopy in combination with uni- and multivariate data analysis
  17. Paper mill sludge as a component of wood adhesive formulation
  18. Implementation of sorption hysteresis in multi-Fickian moisture transport
  19. Time/temperature equivalence in the dry wood creep response
  20. Neural network prediction of bending strength and stiffness in western hemlock (Tsuga heterophylla Raf.)
  21. Bending properties of particleboard and MDF layers
  22. Gold as an X-ray CT scanning contrast agent: Effect on the mechanical properties of wood plastic composites
  23. Lignin modification in the initial phase of softwood kraft pulp delignification with polyoxometalates (POMs)
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/HF.2007.117/html
Scroll to top button