New Method for Quantitative Preparation of Lignin- Carbohydrate Complex from Unbleached Softwood Kraft Pulp: Lignin-Polysaccharide Networks I
-
M. Lawoko
, G. Henriksson and G. Gellerstedt
Summary
A new method for the quantitative preparation of pulp representative lignin-carbohydrate complexes (LCC) has been developed, in which LCC has been systematically prepared at quantitative yield, fractionated and qualitatively determined. At least 90% of residual lignin in softwood kraft pulp is proposed to be chemically bonded to carbohydrates. A major part of LCC (92%) in softwood kraft pulp was observed between lignin, xylan and glucomannan, whereas a minor part (8%) was linked to cellulose. Half of the hemicelullosic LCC is a lignin-glucomannan complex. The other half is lignin-xylan complex and xylan-lignin-glucomannan complex. Thus, part of the residual lignin in softwood kraft pulp crosslinks xylan and glucomannan. The proposed linkages are of covalent type. At most 10% of the residual lignin is not bonded covalently to carbohydrates.
Copyright © 2003 by Walter de Gruyter GmbH & Co. KG
Articles in the same Issue
- The Relationship Between Variability of Cell Wall Mass of Earlywood and Latewood Tracheids in Larch Tree-Rings, the Rate of Tree-Ring Growth and Climatic Changes
- How Variability in OSB Mechanical Properties Affects Biological Durability Testing
- Microfibril Angles Inside and Outside Crossfields of Norway Spruce Tracheids
- Reactivity of a Fungal Laccase Towards Lignin in Softwood Kraft Pulp
- Lignans and Lipophilic Extractives in Norway Spruce Knots and Stemwood
- Investigation of Lignin Oligomers Using Electrospray Ionisation Mass Spectrometry
- Reactions of Lignin with Peroxymonophosphoric Acid: The Degradation of Lignin Model Compounds
- The Reactions of Lignin Model Compounds with Hydrogen Peroxide at Low pH
- Spin Distribution in Dehydrogenated Coniferyl Alcohol and Associated Dilignol Radicals
- Ultrastructural Localisation of Glucomannan in Kraft Pulp Fibres
- New Method for Quantitative Preparation of Lignin- Carbohydrate Complex from Unbleached Softwood Kraft Pulp: Lignin-Polysaccharide Networks I
- Peroxide Bleaching of Parquet Blocks and Glue Lams
- Easily Degradable Chlorinated Compounds Derived from Glucuronoxylan in Filtrates from Chlorine Dioxide Bleaching of Eucalyptus globulus Kraft Pulp
- Non-Deterministic Description of Wood Radio Frequency Vacuum Drying
- Bending Creep of High-Temperature Dried Spruce Timber
- Optimization of a Violin Top with a Combined Laminate Theory and Honeycomb Model of Wood
- Optimisation of Soda Pulping Variables for Preparation of Dissolving Pulps from Oil Palm Fibre
Articles in the same Issue
- The Relationship Between Variability of Cell Wall Mass of Earlywood and Latewood Tracheids in Larch Tree-Rings, the Rate of Tree-Ring Growth and Climatic Changes
- How Variability in OSB Mechanical Properties Affects Biological Durability Testing
- Microfibril Angles Inside and Outside Crossfields of Norway Spruce Tracheids
- Reactivity of a Fungal Laccase Towards Lignin in Softwood Kraft Pulp
- Lignans and Lipophilic Extractives in Norway Spruce Knots and Stemwood
- Investigation of Lignin Oligomers Using Electrospray Ionisation Mass Spectrometry
- Reactions of Lignin with Peroxymonophosphoric Acid: The Degradation of Lignin Model Compounds
- The Reactions of Lignin Model Compounds with Hydrogen Peroxide at Low pH
- Spin Distribution in Dehydrogenated Coniferyl Alcohol and Associated Dilignol Radicals
- Ultrastructural Localisation of Glucomannan in Kraft Pulp Fibres
- New Method for Quantitative Preparation of Lignin- Carbohydrate Complex from Unbleached Softwood Kraft Pulp: Lignin-Polysaccharide Networks I
- Peroxide Bleaching of Parquet Blocks and Glue Lams
- Easily Degradable Chlorinated Compounds Derived from Glucuronoxylan in Filtrates from Chlorine Dioxide Bleaching of Eucalyptus globulus Kraft Pulp
- Non-Deterministic Description of Wood Radio Frequency Vacuum Drying
- Bending Creep of High-Temperature Dried Spruce Timber
- Optimization of a Violin Top with a Combined Laminate Theory and Honeycomb Model of Wood
- Optimisation of Soda Pulping Variables for Preparation of Dissolving Pulps from Oil Palm Fibre