Home Towards more complete specifications for acceptable analytical performance – a plea for error grid analysis
Article
Licensed
Unlicensed Requires Authentication

Towards more complete specifications for acceptable analytical performance – a plea for error grid analysis

  • Jan S. Krouwer EMAIL logo and George S. Cembrowski
Published/Copyright: May 27, 2011

Abstract

We examine limitations of common analytical performance specifications for quantitative assays. Specifications can be either clinical or regulatory. Problems with current specifications include specifying limits for only 95% of the results, having only one set of limits that demarcate no harm from minor harm, using incomplete models for total error, not accounting for the potential of user error, and not supplying sufficient protocol requirements. Error grids are recommended to address these problems as error grids account for 100% of the data and stratify errors into different severity categories. Total error estimation from a method comparison can be used to estimate the inner region of an error grid, but the outer region needs to be addressed using risk management techniques. The risk management steps, foreign to many in laboratory medicine, are outlined.


Corresponding author: Jan S. Krouwer, Krouwer Consulting, 26 Parks Drive, Sherborn, MA 01770, USA Phone: +1-508-653-2379, Fax: +1-508-653-2379

Published Online: 2011-05-27
Published in Print: 2011-07-01

©2011 by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Editorial
  2. Method comparison: where do we draw the line?
  3. Review
  4. Current role of liquid chromatography coupled to mass spectrometry in clinical toxicology screening methods
  5. Minireview
  6. Molecular diagnostics for pharmacogenomic testing of fluoropyrimidine based-therapy: costs, methods and applications
  7. Opinion Paper
  8. Preanalytical quality improvement: from dream to reality
  9. Point
  10. Towards more complete specifications for acceptable analytical performance – a plea for error grid analysis
  11. Counterpoint
  12. Closing the brain-to-brain loop in laboratory testing
  13. General Clinical Chemistry and Laboratory Medicine
  14. Harmonization of growth hormone measurements with different immunoassays by data adjustment
  15. Comparison of the results from two different External Quality Assessment Schemes supports the utility of robust quality specifications
  16. High-throughput LC-MS/MS method for monitoring sirolimus and everolimus in the routine clinical laboratory
  17. Performance of the Roche Total Mycophenolic Acid® assay on the Cobas Integra 400®, Cobas 6000® and comparison to LC-MS/MS in liver transplant patients
  18. Diagnostic efficiency of truncated area under the curve from 0 to 2 h (AUC0–2) of mycophenolic acid in kidney transplant recipients receiving mycophenolate mofetil and concomitant tacrolimus
  19. Good performance of an immunoassay based method for nevirapine measurements in human breast milk
  20. Measurement of plasma amino acids by Ultraperformance® Liquid Chromatography
  21. Interchangeability of blood gas, electrolyte and metabolite results measured with point-of-care, blood gas and core laboratory analyzers
  22. Granularity Index of the SYSMEX XE-5000 hematology analyzer as a replacement for manual microscopy of toxic granulation neutrophils in patients with inflammatory diseases
  23. Direct chromogenic substrate immuno-capture activity assay for testing of factor VII-activating protease
  24. The antinuclear antibody assay: developing criteria for reflexive anti-dsDNA antibody testing in a laboratory setting
  25. A simple liquid chromatography-tandem mass spectrometry method for measuring metanephrine and normetanephrine in urine
  26. Monoclonal gammopathy missed by capillary zone electrophoresis
  27. Adaptation of the Diazyme Direct Enzymatic HbA1c Assay for a microplate reader at room temperature
  28. Validation and Outcome Studies
  29. Laboratory assessment of iron status in pregnancy
  30. Cardiovascular Diseases
  31. Blood cells characteristics as determinants of acute myocardial infarction
  32. No evidence for an association between the rs2824292 variant at chromosome 21q21 and ventricular fibrillation during acute myocardial infarction in a German population
  33. Letters to the Editor
  34. Letter to the Editor Reply: Statistical methods for assessment of added usefulness of new biomarkers
  35. Reply to Vavrova et al. Clin Chem Lab Med 2011;49:89–92
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/CCLM.2011.610/html
Scroll to top button