Home Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review
Article
Licensed
Unlicensed Requires Authentication

Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review

  • Wolfgang Herrmann , Markus Herrmann , Jacob Joseph and Suresh C. Tyagi
Published/Copyright: December 1, 2007
Become an author with De Gruyter Brill
Clinical Chemistry and Laboratory Medicine (CCLM)
From the journal Volume 45 Issue 12

Abstract

Chronic heart failure (CHF) is a major public health problem causing considerable morbidity and mortality. Recently, plasma homocysteine (HCY) has been suggested to be significantly increased in CHF patients. This article reviews the relation between hyperhomocysteinemia (HHCY) and CHF. Clinical data indicate that HHCY is associated with an increased incidence, as well as severity, of CHF. In addition, HCY correlates with brain natriuretic peptide (BNP), a modern biochemical marker of CHF, which is used for diagnosis, treatment guidance and risk assessment. Animal studies showed that experimental HHCY induces systolic and diastolic dysfunction, as well as an increased BNP expression. Moreover, hyperhomocysteinemic animals exhibit an adverse cardiac remodeling characterized by accumulation of interstitial and perivascular collagen. In vitro superfusion experiments with increasing concentrations of HCY in the superfusion medium stimulated myocardial BNP release independent from myocardial wall stress. Thus, clinical and experimental data underline a correlation between HHCY and BNP supporting the role of HHCY as a causal factor for CHF. The mechanisms leading from an elevated HCY level to reduced pump function and adverse cardiac remodeling are a matter of speculation. Existing data indicate that direct effects of HCY on the myocardium, as well as nitric oxide independent vascular effects, are involved. Preliminary data from small intervention trials have initiated the speculation that HCY lowering therapy by micronutrients may improve clinical as well as laboratory markers of CHF.

In conclusion, HHCY might be a potential etiological factor in CHF. Future studies need to explore the pathomechanisms of HHCY in CHF. Moreover, larger intervention trials are needed to clarify whether modification of plasma HCY by B-vitamin supplementation improves the clinical outcome in CHF patients.

Clin Chem Lab Med 2007;45:1633–44.


Corresponding author: Prof. Dr. Wolfgang Herrmann, Department of Clinical Chemistry and Laboratory Medicine, University Hospital, Saarland University, Building 57, 66421 Homburg/Saar, Germany Phone: +49-6841-1630700, Fax: +49-6841-1630703,

Received: 2007-7-30
Accepted: 2007-10-2
Published Online: 2007-12-01
Published in Print: 2007-12-01

©2007 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Homocysteine research: alive and kicking!
  2. Homocysteine-lowering trials for prevention of vascular disease: protocol for a collaborative meta-analysis
  3. Perspective on the efficacy analysis of the Vitamin Intervention for Stroke Prevention trial
  4. Homocysteine-lowering vitamin B treatment decreases cardiovascular events in hemodialysis patients
  5. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases
  6. Management of L-Dopa related hyperhomocysteinemia: catechol-O-methyltransferase (COMT) inhibitors or B vitamins? Results from a review
  7. Biomarkers of folate and vitamin B12 status in cerebrospinal fluid
  8. The role of hyperhomocysteinemia as well as folate, vitamin B6 and B12 deficiencies in osteoporosis – a systematic review
  9. Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review
  10. Homocysteine, left ventricular dysfunction and coronary artery disease: is there a link?
  11. Hyperhomocysteinemia and high-density lipoprotein metabolism in cardiovascular disease
  12. Hyperhomocysteinemia, DNA methylation and vascular disease
  13. Measuring subclinical atherosclerosis: is homocysteine relevant?
  14. Plasma protein homocysteinylation in uremia
  15. Homocysteine and asymmetric dimethylarginine (ADMA): biochemically linked but differently related to vascular disease in chronic kidney disease
  16. Hyperhomocysteinemia – association with renal transsulfuration and redox signaling in rats
  17. Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine
  18. Defects in homocysteine metabolism: diversity among hyperhomocyst(e)inemias
  19. The molecular basis of homocysteine thiolactone-mediated vascular disease
  20. Importance of folate-homocysteine homeostasis during early embryonic development
  21. Association between homocysteine, vitamin B6 concentrations and inflammation
  22. Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry
  23. Holotranscobalamin in laboratory diagnosis of cobalamin deficiency compared to total cobalamin and methylmalonic acid
  24. Haptocorrin in humans
  25. Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase
  26. Decreased p66Shc promoter methylation in patients with end-stage renal disease
  27. Synergism between AT1 receptor and hyperhomocysteinemia during vascular remodeling
  28. Differential expression of γ-aminobutyric acid receptor A (GABAA) and effects of homocysteine
  29. The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial
  30. Acknowledgement
  31. Contents, Volume 45, 2007
  32. Author Index
  33. Subject Index
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/CCLM.2007.360/html
Scroll to top button