Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry
-
Per Magne Ueland
, Øivind Midttun , Amrei Windelberg , Asbjørn Svardal , Rita Skålevik and Steinar Hustad
Abstract
Background: Derangements of one-carbon metabolism have been related to the development of chronic diseases. Metabolic profiling as part of epidemiological studies in this area should include intermediates involved in the transfer of one-carbon units, cofactors for the relevant enzymes and markers of inflammation, kidney function and smoking.
Methods: We established five platforms that measured 6–16 analytes each. Platforms A (gas chromatography-mass spectrometry; GC-MS) and B (gas chromatography-tandem mass spectrometry; GC-MS/MS) involved methylchloroformate derivatization of primary amines, thiols and carboxylic acids. Platform C determined basic compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using an ether-linked phenyl reversed-phase column. Platforms D and E (LC-MS/MS) exploited the efficient ionization and high sensitivity obtained for a wide range of analytes, using a mobile phase containing a high concentration of acetic acid. The chromatographic run times ranged from 3 to 8 min.
Results: The analyte concentrations ranged from 0.2 nmol/L to 400 μmol/L. Platforms A and B both measured methylmalonic acid, total homocysteine and related amino acids. Platform B also included sarcosine, cystathionine, tryptophan and kynurenine. Platform C was optimized for the measurement of choline and betaine, but also included arginine, asymmetric and symmetric dimethylarginine and creatinine. A diversity of low abundance compounds mainly occurring in the nanomolar range were measured on platform D. These were vitamin B2 and B6 species, neopterin, cotinine and tryptophan metabolites. Platform E measured folates and folate catabolites.
Conclusions: Approximately 40 analytes related to one-carbon metabolism were determined in less than 1 mL of plasma/serum using five complementary analytical platforms. As a method control, several metabolites were measured on two or more platforms. Logistics and data handling were carried out by specially designed software. This strategy allows profiling of one-carbon metabolism in large-scale epidemiological studies.
Clin Chem Lab Med 2007;45:1737–45.
©2007 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Homocysteine research: alive and kicking!
- Homocysteine-lowering trials for prevention of vascular disease: protocol for a collaborative meta-analysis
- Perspective on the efficacy analysis of the Vitamin Intervention for Stroke Prevention trial
- Homocysteine-lowering vitamin B treatment decreases cardiovascular events in hemodialysis patients
- The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases
- Management of L-Dopa related hyperhomocysteinemia: catechol-O-methyltransferase (COMT) inhibitors or B vitamins? Results from a review
- Biomarkers of folate and vitamin B12 status in cerebrospinal fluid
- The role of hyperhomocysteinemia as well as folate, vitamin B6 and B12 deficiencies in osteoporosis – a systematic review
- Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review
- Homocysteine, left ventricular dysfunction and coronary artery disease: is there a link?
- Hyperhomocysteinemia and high-density lipoprotein metabolism in cardiovascular disease
- Hyperhomocysteinemia, DNA methylation and vascular disease
- Measuring subclinical atherosclerosis: is homocysteine relevant?
- Plasma protein homocysteinylation in uremia
- Homocysteine and asymmetric dimethylarginine (ADMA): biochemically linked but differently related to vascular disease in chronic kidney disease
- Hyperhomocysteinemia – association with renal transsulfuration and redox signaling in rats
- Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine
- Defects in homocysteine metabolism: diversity among hyperhomocyst(e)inemias
- The molecular basis of homocysteine thiolactone-mediated vascular disease
- Importance of folate-homocysteine homeostasis during early embryonic development
- Association between homocysteine, vitamin B6 concentrations and inflammation
- Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry
- Holotranscobalamin in laboratory diagnosis of cobalamin deficiency compared to total cobalamin and methylmalonic acid
- Haptocorrin in humans
- Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase
- Decreased p66Shc promoter methylation in patients with end-stage renal disease
- Synergism between AT1 receptor and hyperhomocysteinemia during vascular remodeling
- Differential expression of γ-aminobutyric acid receptor A (GABAA) and effects of homocysteine
- The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial
- Acknowledgement
- Contents, Volume 45, 2007
- Author Index
- Subject Index
Articles in the same Issue
- Homocysteine research: alive and kicking!
- Homocysteine-lowering trials for prevention of vascular disease: protocol for a collaborative meta-analysis
- Perspective on the efficacy analysis of the Vitamin Intervention for Stroke Prevention trial
- Homocysteine-lowering vitamin B treatment decreases cardiovascular events in hemodialysis patients
- The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases
- Management of L-Dopa related hyperhomocysteinemia: catechol-O-methyltransferase (COMT) inhibitors or B vitamins? Results from a review
- Biomarkers of folate and vitamin B12 status in cerebrospinal fluid
- The role of hyperhomocysteinemia as well as folate, vitamin B6 and B12 deficiencies in osteoporosis – a systematic review
- Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review
- Homocysteine, left ventricular dysfunction and coronary artery disease: is there a link?
- Hyperhomocysteinemia and high-density lipoprotein metabolism in cardiovascular disease
- Hyperhomocysteinemia, DNA methylation and vascular disease
- Measuring subclinical atherosclerosis: is homocysteine relevant?
- Plasma protein homocysteinylation in uremia
- Homocysteine and asymmetric dimethylarginine (ADMA): biochemically linked but differently related to vascular disease in chronic kidney disease
- Hyperhomocysteinemia – association with renal transsulfuration and redox signaling in rats
- Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine
- Defects in homocysteine metabolism: diversity among hyperhomocyst(e)inemias
- The molecular basis of homocysteine thiolactone-mediated vascular disease
- Importance of folate-homocysteine homeostasis during early embryonic development
- Association between homocysteine, vitamin B6 concentrations and inflammation
- Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry
- Holotranscobalamin in laboratory diagnosis of cobalamin deficiency compared to total cobalamin and methylmalonic acid
- Haptocorrin in humans
- Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase
- Decreased p66Shc promoter methylation in patients with end-stage renal disease
- Synergism between AT1 receptor and hyperhomocysteinemia during vascular remodeling
- Differential expression of γ-aminobutyric acid receptor A (GABAA) and effects of homocysteine
- The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial
- Acknowledgement
- Contents, Volume 45, 2007
- Author Index
- Subject Index