Home Decreased p66Shc promoter methylation in patients with end-stage renal disease
Article
Licensed
Unlicensed Requires Authentication

Decreased p66Shc promoter methylation in patients with end-stage renal disease

  • Jürgen Geisel , Heike Schorr , Gunar H. Heine , Marion Bodis , Ulrich Hübner , Jean-Pierre Knapp and Wolfgang Herrmann
Published/Copyright: December 1, 2007
Become an author with De Gruyter Brill
Clinical Chemistry and Laboratory Medicine (CCLM)
From the journal Volume 45 Issue 12

Abstract

Background: p66Shc is a stress response protein and partially regulated by epigenetic modifications. Mice lacking p66Shc have reduced atherosclerosis, increased resistance to oxidative stress and a prolonged life time. The aim of the present study was to compare promoter methylation of the p66Shc gene between healthy controls and patients with end-stage renal disease (ESRD). There are two reasons for studying patients with ESRD. First, patients with ESRD have a disturbed homocysteine metabolism, and second an increased risk of morbidity and mortality from cardiovascular disease is a constant finding in these patients.

Methods: In our study, we measured fasting levels of homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and 8-isoprostane in 22 patients and in 26 healthy, age- and sex-matched controls. The methylation of the p66Shc promoter and Line-1, as surrogate marker of whole genome methylation was quantified in peripheral blood mononuclear cells.

Results: In comparison to the control group, homocysteine, SAM, SAH, 8-isoprostane and whole genome methylation were significantly elevated in ESRD patients, while the p66Shc promoter methylation was significantly reduced. A significant correlation was found between SAH and p66Shc promoter methylation in the patient group. This observation underlines the role of SAH as a potent inhibitor of methyltransferases. Using backward regression analysis, we demonstrated that 8-isoprostane has a significant influence on p66Shc promoter methylation. In the control group and in patients with ESRD, increasing 8-isoprostane levels were linked to an elevated promoter methylation.

Conclusions: Under physiological conditions, based on the results of the control group, the p66Shc expression is more silenced through epigenetic modifications. The atherosclerotic risk is dramatically increased in ESRD patients; therefore, our experimental results of methylation are in accordance with the clinical situation.

Clin Chem Lab Med 2007;45:1764–70.


Corresponding author: Prof. Dr. J. Geisel, Department of Clinical Chemistry, Saarland University Hospital, 66421 Homburg, Germany Phone: +49-6841-1630706, Fax: +49-6841-1630703,

Received: 2007-8-13
Accepted: 2007-10-23
Published Online: 2007-12-01
Published in Print: 2007-12-01

©2007 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Homocysteine research: alive and kicking!
  2. Homocysteine-lowering trials for prevention of vascular disease: protocol for a collaborative meta-analysis
  3. Perspective on the efficacy analysis of the Vitamin Intervention for Stroke Prevention trial
  4. Homocysteine-lowering vitamin B treatment decreases cardiovascular events in hemodialysis patients
  5. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases
  6. Management of L-Dopa related hyperhomocysteinemia: catechol-O-methyltransferase (COMT) inhibitors or B vitamins? Results from a review
  7. Biomarkers of folate and vitamin B12 status in cerebrospinal fluid
  8. The role of hyperhomocysteinemia as well as folate, vitamin B6 and B12 deficiencies in osteoporosis – a systematic review
  9. Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review
  10. Homocysteine, left ventricular dysfunction and coronary artery disease: is there a link?
  11. Hyperhomocysteinemia and high-density lipoprotein metabolism in cardiovascular disease
  12. Hyperhomocysteinemia, DNA methylation and vascular disease
  13. Measuring subclinical atherosclerosis: is homocysteine relevant?
  14. Plasma protein homocysteinylation in uremia
  15. Homocysteine and asymmetric dimethylarginine (ADMA): biochemically linked but differently related to vascular disease in chronic kidney disease
  16. Hyperhomocysteinemia – association with renal transsulfuration and redox signaling in rats
  17. Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine
  18. Defects in homocysteine metabolism: diversity among hyperhomocyst(e)inemias
  19. The molecular basis of homocysteine thiolactone-mediated vascular disease
  20. Importance of folate-homocysteine homeostasis during early embryonic development
  21. Association between homocysteine, vitamin B6 concentrations and inflammation
  22. Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry
  23. Holotranscobalamin in laboratory diagnosis of cobalamin deficiency compared to total cobalamin and methylmalonic acid
  24. Haptocorrin in humans
  25. Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase
  26. Decreased p66Shc promoter methylation in patients with end-stage renal disease
  27. Synergism between AT1 receptor and hyperhomocysteinemia during vascular remodeling
  28. Differential expression of γ-aminobutyric acid receptor A (GABAA) and effects of homocysteine
  29. The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial
  30. Acknowledgement
  31. Contents, Volume 45, 2007
  32. Author Index
  33. Subject Index
Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/CCLM.2007.357/html
Scroll to top button