Impact of glycosylation and detergent-resistant membranes on the function of intestinal sucrase-isomaltase
-
Gabi Wetzel
Abstract
Sucrase-isomaltase (SI) is a highly N- and O-glycosylated intestinal brush border membrane protein. SI is sorted with high fidelity to the apical membrane via O-linked glycans that mediate its association with lipid rafts or detergent-resistant membranes (DRMs). Here, we show that N- and O-glycosylation and DRMs are implicated in the regulation of the function of SI in intestinal Caco-2 cells. The activities of sucrase (SUC) and isomaltase (IM) increase substantially in DRMs when N- and O-glycosylation patterns are intact. Disruption of DRMs by solubilization with Triton X-100 at 37°C substantially reduces the activities of SUC and IM. Furthermore, modulation of O-glycosylation by benzyl-2-acetamido-2-deoxy-α-d-galactopyranoside and N-glycosylation by deoxymannojirimycin is linked to a decreased capacity of SI to associate with DRMs, with a subsequent reduction of the enzymatic activities of SUC and IM. This is the first report that reveals a direct role of N- and O-glycans in association with DRMs in regulating the function of a membrane glycoprotein.
©2009 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Guest Editorial
- Highlight: Perspectives in glycobiology
- Cell biology and glycosylation: protein targeting by O- and N-linked glycosylation
- Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases
- Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking
- Impact of glycosylation and detergent-resistant membranes on the function of intestinal sucrase-isomaltase
- MUC1 traverses apical recycling endosomes along the biosynthetic pathway in polarized MDCK cells
- Cell biology and glycosylation: carbohydrate-mediated recognition and signaling in cell proliferation and differentiation
- From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans
- Brain development needs sugar: the role of polysialic acid in controlling NCAM functions
- Beyond glycosylation: sialic acid precursors act as signaling molecules and are involved in cellular control of differentiation of PC12 cells
- Glycosylation and disease
- Management of the human mucosal defensive barrier: evidence for glycan legislation
- Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis
- GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells
- Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice
- Protein-specific glycosylation and its control
- Protein-specific glycosylation: signal patches and cis-controlling peptidic elements
- O-glycosylation pattern of CD24 from mouse brain
- Advancements in analytical techniques
- Carbohydrate microarrays: key developments in glycobiology
- On-line nano-HPLC/ESI QTOF MS monitoring of α2–3 and α2–6 sialylation in granulocyte glycosphingolipidome
Articles in the same Issue
- Guest Editorial
- Highlight: Perspectives in glycobiology
- Cell biology and glycosylation: protein targeting by O- and N-linked glycosylation
- Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases
- Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking
- Impact of glycosylation and detergent-resistant membranes on the function of intestinal sucrase-isomaltase
- MUC1 traverses apical recycling endosomes along the biosynthetic pathway in polarized MDCK cells
- Cell biology and glycosylation: carbohydrate-mediated recognition and signaling in cell proliferation and differentiation
- From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans
- Brain development needs sugar: the role of polysialic acid in controlling NCAM functions
- Beyond glycosylation: sialic acid precursors act as signaling molecules and are involved in cellular control of differentiation of PC12 cells
- Glycosylation and disease
- Management of the human mucosal defensive barrier: evidence for glycan legislation
- Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis
- GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells
- Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice
- Protein-specific glycosylation and its control
- Protein-specific glycosylation: signal patches and cis-controlling peptidic elements
- O-glycosylation pattern of CD24 from mouse brain
- Advancements in analytical techniques
- Carbohydrate microarrays: key developments in glycobiology
- On-line nano-HPLC/ESI QTOF MS monitoring of α2–3 and α2–6 sialylation in granulocyte glycosphingolipidome