Home Life Sciences Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking
Article
Licensed
Unlicensed Requires Authentication

Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking

  • Willy Morelle , Laurence Stechly , Sabine André , Isabelle Van Seuningen , Nicole Porchet , Hans-Joachim Gabius , Jean-Claude Michalski and Guillemette Huet
Published/Copyright: May 9, 2009
Biological Chemistry
From the journal Volume 390 Issue 7

Abstract

We have previously reported that galectin-4, a tandem repeat-type galectin, regulates the raft-dependent delivery of glycoproteins to the apical brush border membrane of enterocyte-like HT-29 cells. N-Acetyllactos-amine-containing glycans, known as galectin ligands, were found enriched in detergent-resistant membranes. Here, we analyzed the potential contribution of N- and/or O-glycans in this mechanism. Structural studies were carried out on the brush border membrane-enriched fraction using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and nano-ESI-QTOF-MS/MS. The pattern of N-glycans was very heterogeneous, with the presence of high mannose- and hybrid-type glycans as well as a multitude of complex-type glycans. In contrast, the pattern of O-glycans was very simple with the presence of two major core type 1 O-glycans, sialylated and bisialylated T-antigen structures [Neu5Acα2–3Galβ1–3GalNAc-ol and Neu5Acα2– 3Galβ1–3(Neu5Acα2–6)GalNAc-ol]. Thus, N-glycans rather than O-glycans contain the N-acetyllactosamine recognition signals for the lipid raft-based galectin-4-dependent apical delivery. In the presence of 1-deoxymannojirimycin, a drug which inhibits the generation of hybrid-type or complex type N-glycans, the extensively O-glycosylated mucin-like MUC1 glycoprotein was not delivered to the apical brush border but accumulated inside the cells. Altogether, our data demonstrate the crucial role of complex N-glycans in the galectin-4-dependent delivery of glycoproteins to the apical brush border membrane of enterocytic HT-29 cells.


Corresponding author

Received: 2009-2-11
Accepted: 2009-4-3
Published Online: 2009-05-09
Published in Print: 2009-07-01

©2009 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Guest Editorial
  2. Highlight: Perspectives in glycobiology
  3. Cell biology and glycosylation: protein targeting by O- and N-linked glycosylation
  4. Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases
  5. Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking
  6. Impact of glycosylation and detergent-resistant membranes on the function of intestinal sucrase-isomaltase
  7. MUC1 traverses apical recycling endosomes along the biosynthetic pathway in polarized MDCK cells
  8. Cell biology and glycosylation: carbohydrate-mediated recognition and signaling in cell proliferation and differentiation
  9. From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans
  10. Brain development needs sugar: the role of polysialic acid in controlling NCAM functions
  11. Beyond glycosylation: sialic acid precursors act as signaling molecules and are involved in cellular control of differentiation of PC12 cells
  12. Glycosylation and disease
  13. Management of the human mucosal defensive barrier: evidence for glycan legislation
  14. Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis
  15. GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells
  16. Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice
  17. Protein-specific glycosylation and its control
  18. Protein-specific glycosylation: signal patches and cis-controlling peptidic elements
  19. O-glycosylation pattern of CD24 from mouse brain
  20. Advancements in analytical techniques
  21. Carbohydrate microarrays: key developments in glycobiology
  22. On-line nano-HPLC/ESI QTOF MS monitoring of α2–3 and α2–6 sialylation in granulocyte glycosphingolipidome
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2009.075/html
Scroll to top button