Home Life Sciences Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice
Article
Licensed
Unlicensed Requires Authentication

Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice

  • Sean O. Ryan , Anda M. Vlad , Kazi Islam , Jean Gariépy and Olivera J. Finn
Published/Copyright: May 9, 2009
Biological Chemistry
From the journal Volume 390 Issue 7

Abstract

Human adenocarcinomas overexpress a hypoglycosylated, tumor-associated form of the mucin-like glycoprotein MUC1 containing abnormal mono- and disaccharide antigens, such as Tn, sialyl-Tn, and TF, as well as stretches of unglycosylated protein backbone in the variable number of tandem repeats (VNTR) region. Both peptide and glycopeptide epitopes generated from the VNTR are candidates for cancer vaccines and we performed experiments to evaluate their relative potential to elicit tumor-MUC1-specific immunity. We show here that immunization with the 100 amino acid-long VNTR peptide (MUC1p) elicits weaker responses in MUC1 transgenic mice compared to wild type mice suggesting self-tolerance. In contrast, when glycosylated with tumor-associated Tn antigen (GalNAc-O-S/T), TnMUC1 induces glycopeptide-specific T cell and antibody responses in both strains of mice and helps enhance responses to MUC1p in MUC1 transgenic mice. Using newly derived MUC1-specific mouse T cell hybridomas we show that the only antigen-presenting cells able to cross-present TnMUC1 glycopeptide are dendritic cells (DCs). This is likely due to their exclusive expression of receptors capable of binding TnMUC1. We conclude that MUC1 glycopeptides induce stronger immunity in MUC1-Tg mice because they are recognized as `foreign' rather than `self' and because they are cross-presented preferentially by DCs.


Corresponding author

Received: 2009-2-11
Accepted: 2009-3-30
Published Online: 2009-05-09
Published in Print: 2009-07-01

©2009 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Guest Editorial
  2. Highlight: Perspectives in glycobiology
  3. Cell biology and glycosylation: protein targeting by O- and N-linked glycosylation
  4. Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases
  5. Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking
  6. Impact of glycosylation and detergent-resistant membranes on the function of intestinal sucrase-isomaltase
  7. MUC1 traverses apical recycling endosomes along the biosynthetic pathway in polarized MDCK cells
  8. Cell biology and glycosylation: carbohydrate-mediated recognition and signaling in cell proliferation and differentiation
  9. From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans
  10. Brain development needs sugar: the role of polysialic acid in controlling NCAM functions
  11. Beyond glycosylation: sialic acid precursors act as signaling molecules and are involved in cellular control of differentiation of PC12 cells
  12. Glycosylation and disease
  13. Management of the human mucosal defensive barrier: evidence for glycan legislation
  14. Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis
  15. GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells
  16. Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice
  17. Protein-specific glycosylation and its control
  18. Protein-specific glycosylation: signal patches and cis-controlling peptidic elements
  19. O-glycosylation pattern of CD24 from mouse brain
  20. Advancements in analytical techniques
  21. Carbohydrate microarrays: key developments in glycobiology
  22. On-line nano-HPLC/ESI QTOF MS monitoring of α2–3 and α2–6 sialylation in granulocyte glycosphingolipidome
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2009.070/html
Scroll to top button