Home Life Sciences Protein-specific glycosylation: signal patches and cis-controlling peptidic elements
Article
Licensed
Unlicensed Requires Authentication

Protein-specific glycosylation: signal patches and cis-controlling peptidic elements

  • Franz-Georg Hanisch and Isabelle Breloy
Published/Copyright: March 5, 2009
Biological Chemistry
From the journal Volume 390 Issue 7

Abstract

The term ‘protein-specific glycosylation’ refers to important functional implications of a subset of glycosylation types that are under direct control of recognition determinants on the protein. Examples of the latter are found in the formation of the mannose-6-phosphate receptor ligand on lysosomal hydrolases, and in polysialylation of NCAM, which are regulated via conformational signal patches on the protein. Distinct from these examples, the β4-GalNAc modification of N-linked glycans on a selected panel of proteins, such as carbonic anhydrase or glycodelin, was demonstrated recently to require specific protein (sequence) determinants proximal to the glycosylation site that function as cis-regulatory elements. Another example of such a cis-regulatory element was described for the control of mammalian O-mannosylation. In this case, the structural features of substrate sites within the mucin domain of α-dystroglycan are necessary, but not sufficient for determining the transfer of mannose to Ser/Thr. Evidence has been provided that an upstream-located peptide is also essential. Such cis-controlling elements provide a higher level of protein specificity, because a putative glycosylation site cannot result from a single point mutation. Here, we highlight recent work on protein-specific glycosylation with particular emphasis on the above-cited examples and we will try to link protein-specific glycosylation to function.


Corresponding author

Received: 2008-12-22
Accepted: 2009-1-26
Published Online: 2009-03-05
Published in Print: 2009-07-01

©2009 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Guest Editorial
  2. Highlight: Perspectives in glycobiology
  3. Cell biology and glycosylation: protein targeting by O- and N-linked glycosylation
  4. Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases
  5. Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking
  6. Impact of glycosylation and detergent-resistant membranes on the function of intestinal sucrase-isomaltase
  7. MUC1 traverses apical recycling endosomes along the biosynthetic pathway in polarized MDCK cells
  8. Cell biology and glycosylation: carbohydrate-mediated recognition and signaling in cell proliferation and differentiation
  9. From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans
  10. Brain development needs sugar: the role of polysialic acid in controlling NCAM functions
  11. Beyond glycosylation: sialic acid precursors act as signaling molecules and are involved in cellular control of differentiation of PC12 cells
  12. Glycosylation and disease
  13. Management of the human mucosal defensive barrier: evidence for glycan legislation
  14. Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis
  15. GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells
  16. Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice
  17. Protein-specific glycosylation and its control
  18. Protein-specific glycosylation: signal patches and cis-controlling peptidic elements
  19. O-glycosylation pattern of CD24 from mouse brain
  20. Advancements in analytical techniques
  21. Carbohydrate microarrays: key developments in glycobiology
  22. On-line nano-HPLC/ESI QTOF MS monitoring of α2–3 and α2–6 sialylation in granulocyte glycosphingolipidome
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2009.043/html
Scroll to top button